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Abstract

We examine the effect of errors in covariates in rionparametric func­
tion estimation. These functions include densities, regressions and
conditional quantiles. To estimate these functions, we use the idea
of deconvoluting kernels in conjunction with the ordinary kernel meth­
ods. We also discuss a new class of function estimators based on local
polynomials.
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1 Introduction

In nonparametric regression analysis, one is interested in analyzing the rela­
tionship between the response Y and the covariate X through the regression
function E(YIX). Suppose now X contains another random variable XO so
that X =XO +eo-a situation in which the variable of interest (XO) is mea­
sured with error. An important issue arises as how to recover the association
between Y and XO. Note that XO is not directly observable and this com­
plicates the problem of estimating the regression function E(YIXO) since
one will have to "recover" XO from X first. Alternately, it may be worth
exploring the association between Y and XO by considering the conditional
median function med(YIXO), especially in situations involving asymmetric
conditional distributions. Note that it is necessary to make this problem
identifiable by assuming the "error" eo has a known distribution and that it
is independent of XO and Y.

Given a training set (XI, Yt}, ... ,(Xn , Yn ) from the distribution of (X, Y)
with X = XO+eo, the problem of estimating the regression function m(XO) =
E(YIXO) or the conditional median function m(XO) = med(YIXO) is called
regression analysis with errors-in-variables. It is said to be parametric if the
regression function is assumed to be a specific function with unknown pa­
rameters. See, for example, Armstrong (1985), Stefanski (1985), Stefanski
and Carroll(1985), Prentice (1986), Whittemore and Keller (1986) and Fuller
(1987). In this approach, there is no formal ways of verifying the appropri­
ateness of the regression model. Moreover, the parameters are estimated by
maximizing the likelihood equation which is usually very complicated.

To overcome the above difficulties in parametric analysis, the present pa­
per adopts the nonparametric approach by estimating the regression func­
tion directly. In the absence of measurement errors, there is now a hugh
literature on regression function estimation for studying the structures be­
tween Y and X. In situation with measurement errors, it is necessary to
modify these methods since regression is used to study the effect of XO on
Y, not X on Y. To achieve this, we must know how to recover XO from
X. This operation is called deconvolution and it was first used in density
estimation involving measurement errors.

This paper is outlined as follows. Section 2 begins with the problem of
density estimation based on deconvoluted kernel method, since it is really the
building block for estimating other functions. It then considers the prob­
lem of estimating nonparametric regression functions such as conditional
mean and conditional median. Section 3 reviews some optimal properties
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possessed by these estimators. Section 4 discusses generalizations of these
kernel methods to design-adaptive method based on local polynomials. Nu­
merical examples are given in Section 5. Section 6 contains some concluding
remarks.

2 Methods

2.1 Deconvoluted kernel density estimators

Set X = Xo + e and let Xl, ... ,Xn denote a training sample from the
distribution of X. Assume that the error e has a non-vanishing characteristic
function <Pe(t) ::f o. Denote the characteristic functions of X and XO by <Pxo
and <Pxo(.), respectively. By Fourier inversion, the density function of XO is
given by

1 100
1 100

<px(t)/xo(Z) =-2 ex~(-itz)<pxo(t) dt =-2 exp( -itz)-;;:--() dt.
1r -00 1r -00 'l"e t

Thus the problem of estimating the density function of XO can be reduced
to the estimation of the function

<Px(t) = i: exp(itz)/x(z)dz,

which, in turn is a density estimation problem based on X. To this e~d, let
K(·) denote a kernel function and hn be a bandwidth. Suppose the density
function / X ( .) of X (no errors) is now estimated by the usual kernel method:

j(z)=_l t,K(Z-Xi).
nhn I hn

Then we arrive at an estimator of <px(·):

~x(t) = i: exp(itz)j(z)dz

= 100
exp(itZ)-h

l
t,K (Z ~ Xi) dx

-00 n n I n

1 n 100= - E exp(itXi) exp(ituhn)K(u) du
n I -00

= ~n(t)<PK(thn),
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where 4>K(·) is the Fourier transfonn of K(·) and ¢n(t) =n-1 Li eitXi . This
leads to a natural estimator of the density function of Xc:

1 100
• ¢x(t)- exp(-atx)--dt

211' -00 4>e(t)

= ..!- roo eXP(-itX)4>K(thn)~n«t)) dt.
211' J-00 'f'e t

(2.1)

(2.2)

(2.4)

It is useful to note that the above estimator can be rewritten in the kernel
form:

A 1 ~ x-X·
fn(x)=-h L-Kn( h J),

n n 1 n

where the kernel (called deconvoluted kernel) is given by

1 100
• 4>K(t)

Kn(x) = 211' -00 exp(-ltX) 4>e(t/hn) dt. (2.3)

This deconvQluted kernel density estimator was considered by Stefanski and
Carroll (1990) and Zhang (1990). Optimal properties are established by Fan
(1991a). See also references given therein.

2.2 Deconvoluted kernel regression function estimators

Given a random sample (X}, Y1 ), •.. , (Xn,Yn) from the distribution of (X, Y),
we first review the kernel estimator of the regression function m(x) =
E(YIX = x). As before, let K(·) denote a kernel function and hn be a
bandwidth. Then the kernel estimator is the weighted average given by
(Nadaraya (1964), Watson (1964))

L·Y-K (~)
A ( ) J J hnmn x =

Li K (~)
Now suppose X =XO +g and consider the problem of estimating the regres­
sion function E(YIXO). Since the deconvoluted kernel (2.3) has the effect
of separating XO from X in constructing the correct neighborhood around
a given x, hence the kernel estimator (2.4) should be modified by replacing
K(·) with K n (-) to account for this effect. Based on this idea, Fan and
Truong (1990) proposed the following estimator for E(YIXo = x):

L·Y·K (~)
A () J J n hn (2.5)

m
n

x = LiKn (X;;:i)
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(2.6)

This estimator has many interesting optimal properties depending on the
error distributions, which will be discussed with more details in Section 3.

2.3 Deconvoluted kernel median function estimators

Now consider the problem of estimating the conditional median function
m(x) =med(YIXO). We first consider the problem of estimating the condi­
tional distribution in the absence of measurement errors. A kernel estimator
of F(yIX = x) =P(Y ~ ylX =x) is given by

EjK (~) 1(Yj ~ y)
Fn(ylx) = ( X)

'".K ==..:w.LJI hn

From this, one obtains the following conditional median estimator [see Truong
(1989)]:

(2.7)

(2.8)

To deal with the case involving measurement errors, we simply replace the
kernel function K(·) by KnO given in (2.3). This yields the deconvoluted
kernel estimator of F(yIXO = x):

A Ej K n (=?-) 1(Yj ~ y)
Fn(ylx) = ( X)"'.K ==..:w.LJI n hn

To estimate m(x) =med(YIXo =x), we propose

mn(x) = P;1(1/2Ix ). (2.9)

More generally, it is easy to modify this approach to cover the problem
of estimating conditional quantiles. Let 0 < p < 1. The pth conditional
quantile is defined as F-l(pIXO = x), which is the pth quantile of the
conditional distribution F( ·IXo = x). To estimate this quantile, we propose
the following deconvoluted kernel estimator:

(2.10)

Since (2.5) and (2.9) are respectively the mean and the median of (2.8),
it is expected that the conditional median estimator (2.9) shares the similar
optimalities as the regression estimator (2.5).
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3 Optimal rates of convergence

Theoretical aspects of the problem on estimation of the density function Ix.
and the regression function E(YIXO) are given in Fan (1991a, b) and Fan
and Truong (1990). These results can be highlighted as follows .

• The estimates (2.1) and (2.5) are optimal in terms of rate of conver­
gence.

• The rates of convergence depend on the smoothness of error distribu­
tions, which can be characterized into two categories: ordinary smooth
and super smooth. Let <Pe be the characteristic function of the error
distribution. The distribution of e is said to be

- super smooth of order {3: if the function <Pe(·) satisfies

doltl.Bo exp( -ltl.B/1') ~ I<Pe (t)I ~ d1 ltl.Bl exp( -ltl.B /1'), as t -+ 00,

(3.1)
where do, d1, {3, 'Yare positive constants and {30,{31 are constants;

- ordinary smooth of order {3: if the function <PeO satisfies

(3.2)

for positive constants do,dI,{3.

For example, super smooth distributions are

{
N(O,l) (normal) with {3 = 2,
; 1';':z:2 (Cauchy) with {3 = 1.

Ordinary smooth distributions are

{
r1;)xP-1e-a:z: (Gamma) with {3 =p,

!e-I:z:1 (double exponential) with {3 = 2 .

The rates of convergence for deconvoluted kernel estimators depend on
{3, the order of smoothness of the error distribution. They also depend
on the smoothness of the regression function m(x) and the marginal
density function. For regression functions with bounded k-th deriva­
tives, the following table illustrates the optimal rates of convergence
according to the error distribution.
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I EM'Or distribution I Rates ~ EM'Or distribution I Rates

N(O,l) (log n)' -k/2 Gamma(a,p) n-k/(2k+2p+l)

Cauchy (0,1) (logn)-k Double exponential n -k/(2k+5)

For density estimation based on deconvolution, a similar table is pro­
vided in Fan (1991a).

• The optimal choice of bandwidth hn depends also on the error distri­
bution. For the supersmooth error distribution of order /3, the optimal
hn =c{logn)-l/P for some constant c depending only on the error dis­
tribution and the kernel function. In the ordinary case, the optimal

1

• S.uppose minxE[a,b] Ixo(x) > 0 and that the conditional variance

Set
n n

q~ = I:(l'i - mn(Xi»21{a~Xj9}/ I: l{a~Xj~b}
1 1

and

iT; = q~ t 1..K~ (X - Xi).
n Ihn hn

Then under appropriate conditions on hn (which depends on the error
distribution),

Note that this result is presented so that confidence intervals about
the regression function can be easily obtained. For details, see Fan,
Truong and Wang (1990). See also therein for a discussion on how to
choose hn for different type of error distributions. A similar result for
density estimation is given Fan (1991b).
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4 Extensions: a design-adaptive approach

4.1 Regression functions

As in the case of ordinary kernel regression function estimation, the optimal
properties of the deconvoluted kernel regression estimator (2.5) depends
on some smoothness condition of the marginal distribution. For example,
to show that (2.5) possesses the optimal rates of convergence when the
regression function m(x) has a bounded (k+ 1)st derivative, it is also required
that the marginal density function has a bounded (k + 1)st derivative, too.
See Fan and Truong (1990). In this section, we propose a different approach
that would remove the extra smoothness condition imposed on the marginal
distribution.

Note that the deconvoluted kernel regression estimator (2.5) can be
viewed as mn(x) = awhere aminimizes L 2-discrepancy:

(
X - x")G(a) = ~(Yj - a)2Kn h

n
J ,

J

with K n (·) being the deconvoluted kernel function (2.3). Suppose now the
regression function m(x) has a bounded (k +1)st derivative. Define a new
estimator by mn ( x) = ao, where ao, ... ,a" minimize

" ' " 2 (X - Xj)G(ao, .. : ,a,,) = ~(Yj - ao -alex - Xj)-"· - a,,(x- Xj) ) K n h
n

•

J

(4.1)
In fact, in the absence of measurement errors, Stone (1982) established that
the estimators defined by (4.1) achieve the optimal rates of convergence
without putting smoothness conditions on the marginal density, and Fan
(1990) extended this idea to the smooth kernel case which possesses a num­
ber of efficient properties. The present approach is inspired by the latter
idea based on smooth kernel and it is called design-adaptive since it does
not require extra smoothness conditions on the marginal density function for
achieving the optimal rates of convergence. In other words, the estimator
adapts to both nearly uniform designs and highly clustered designs.

Example 1: Weighted Linear Regression

Suppose the regression function m(x) = E(YIXo = x) has a bounded
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second derivative. Define mn ( x) = a, where a, along with b, minimize

Simple algebra shows

n n

mn(x) = LWn,jY;/ LWn,i'
1 1

where

and
~ (X-x.) I8n,I=~Kn h J (x-Xj),
J=1 n

1=1,2.

4.2 Quantile functions

The deconvoluted kernel median function estimator (2.9) can also be viewed
as mn(x) = a where a minimizes Ll-discrepancy:

(
X - x.)

G(a) = ~IY; - alKn h
n

J ,

J

with KnO given by (2.3). Similar to the approach given in the previous
section, define a new estimator by mn ( x) = ao, where ao, ... ,ak minimize

'" k (X-Xj)G(ao, ... ,ak) = ~ IY; - ao - al(x - Xj) - ... - ak(x - Xj) IKn h
n

.
J

(4.2)
The estimator defined by (4.2) can further be extended as follows. Let

mn(x) =ao, with ao, ... ,ak minimizing

(X-x.)G(aO, ... ,ak) = ~g(Y;-ao-al(x-Xj)- ... -ak(x-Xj)k)Kn h
n

J ,

J

(4.3)
where g(z) = (pz+ + (1 - p)z_), 0 < p < 1. This leads to the estimation of
conditional quantiles in general. Note that, when p = 1/2, (4.3) reduces to
(4.2).
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(5.1)

5 Numerical Results

In this section, we are interested in the estimation of regression function
for binary responses. Let Y denote a 0-1 random variable whose distribu­
tion depends on another random variable (covariate) XO so that the logistic
transformation of its regression function is quadratic (see Figure 2):

m(x) = E(YIXo = x) = P(Y = 11Xo = x) = exp(-6(x - 0.5)2) .
1 +exp(-6(x - 0.5)2)

That is, given XO = x, Y takes the value 1 with probability m(x). Now
suppose XO "" unif(O,l) and that XO is not available, instead we observe
it through X = XO +E, where E is a random error with mean 0 and finite
variance. Given a random sample from the distribution of (X, Y), we would
like to estimate m(x) = E(YIXo = x). From the theoretical aspect of
Section 3, we know that the error distribution plays an important role in
determining the sampling behaviors of the deconvoluted kernel estimator.
Computationally, this will be addressed in the following examples.

Example 2: Super Smooth Errors

Suppose E has a normal distribution with mean 0 and variance CT~. Let
(Xl, Yl ), • •• , (X2(x), Y200) denote a random sample from the distribution of
(X, Y) so that

Xi = Xi +Ei, Xi ""iid unif(O, 1), Ei ""iid N(0, CT5),
__ {1, with probability m(Xf);

Yi 0, with probability 1 - m(Xf).

Here CTo is selected so that CT~/var(Xf) = 0.10. Suppose the kernel K(·) is
an inverse triangular density so that its Fourier transform is given by

<PK(t) = (l-ltl)+.

By <p~(t) =exp(- !CT~t2) and (2.3),

Kn(x) =; fal cos(tx)(l- t)exp (;i~) dt. (5.2)

For the estimator (2.5) to achieve the optimal rates of convergence, the
bandwidth hn is chosen so that hn = CCTo(log n)-1/2 with C > 1. See Fan
and Truong (1990). Note that the deconvoluted kernel function depends on
n. Figure 1 plots these functions for different values of the constant factor
c. Deconvoluted estimators with different Care presented in Figure 2.
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Deconvoluted kernel and ordinary kernel functions
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Example 3: Ordinary Smooth Errors

As in (5.1), (Xl, Yl ), ... , (X200, Y200) denotes a random sample from the
distribution of (X, Y) with c now having a double exponential distribution:

Here 0'0 is chosen so that O'Vvar(Xf) = 0.10. The 200 simulated data are
plotted in Figure 4. A star" * " indicates an observed data point.

Note that
1

<p~(t) = 1 + 10'~t2'

If K(·) is the gaussian kernel K(x) = (V21i)-lexp(-x2j2), then by (2.3),

Kn(x) = 2~ I: exp( -itX)<PK(t) (1 + ~~t;) dt

(72 1 JOO
= K(x) + 4;~ 211" -00 exp(-itx)t2 <pK(t)dt

2

= K(x) - 41:2 K"(x)
n

1 (1 2) [ O'~ 2 ]= v'21r exp -2x 1 - 4h~ (x - 1) .

Figure 3 plots the deconvoluted kernel functions and Figure 4 gives the
estimators (2.5) with hn = 0.08,0.16,0.32. It is clear that the estimate with
hn = 0.08 is under smooth the curve, while the estimate with hn = 0.32
over smooth the curve.

Fan and Truong (1990) showed that the optimal rates of convergence
can be achieved by choosing hn fV cn-l /9 with c > 0.

We compute also the estimate (2.5) with other choices of bandwidth. It
turns out that the estimates for the super smooth case are very sensitive
to the choice of the bandwidth when hn = cO'o(log n )-1/2 with c < 1. This
seems compatible with the theory: the variance is very large and the estimate
is even not consistent. One the other hand, the bandwidth is relatively less
sensitive for the ordinary smooth case.
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Deconvoluted kernel and ordinary kernel functions
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6 Conclusions

In this paper, we discuss methods for estimating nonparametric functions
involving errors-in-variables. Density estimation was considered first be­
cause it sets the foundation for deconvolution. We then address problems
on estimating the regression function and conditional quantiles. Extensions
of these estimators to design-adaptive ones (Le. local polynomials) are also
given. Although we have not provided proofs, but it seems plausible that the
design-adaptive estimators would achieve the optimal rates of convergence
without requiring extra smoothness conditions on the marginal distribution.
There are also some other important open problems:

• the performance of the deconvoluted conditional quantile estimators
(2.7) and (2.10);

• the sampling properties of design-adaptive quantile estimators (4.2)
and (4.3);

• the amount of noise level .jvar(c) that would make nonparametric
deconvolution feasible.
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