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SUMMARY

A mixture of Inverse Gaussian distributions is examined as a model for the lifetime of components. The
components differ in one of three ways: in their initial quality, rate of wear, or variability of wear.
These three cases are well represented by the parameters of the Inverse Gaussian model. The
mechanistic interpretation of the Inverse Gaussian distribution as the first passage time of Brownian
motion with positive drift is adopted. The parameters considered are either dichotomous or continuous
random variables. Parameter estimation is also examined for these two cases. The model seems to be
most appropriate when the single Inverse Gaussian distribution model fails duelt.o heterogeneity of the

initial component quality.

KEY WORDS Inverse Gaussian distribution, Mixtures, Brownian motion, Hazard rate, Maximum

likelihood estimation

1. INTRODUCTION
The Inverse Gaussian distribution (IGD) has been proposed and examined several times as a lifetime
model (e.g., References 1, 2, 3). It is particularly useful when the lifetime distribution reflects an initial
high rate of wear and failure via an early mode and positive skew; and the hazard rate first increases
and then decreases to a nonzero asymptotic level. One of its advantages over other lifetime models
follows from its mechanistic interpretation as the first-passage-time across a constant boundary, S, of
Brownian motion4’5’6. In this interpretation the introduction of a random initial condition, X can be
viewed as a different quality assigned to each item at the moment of its production, and that
subsequent changes in quality (cumulative wear, fatigue, crack growth, etc.) can be modeled as a

Wiener process with positive drift (see e.g. Reference 4). Denoting this process by X(t) and the initial



value X(0) by X;, then P(Xy > S) becomes the probability that a new item is a defective one at the
moment of its production. For the sake of simplicity we further assume that P(Xo > S) =0, or that
this probability is negligible. In order to retain the physical interpretation of the model mentioned
above, we will use the parameterization from the diffusion-threshold viewpoint rather than that

commonly used for the IGD (c.f., Reference 7).

2. FIXED PARAMETERS

2 509

The first passage time of a Wiener process with drift 4 > 0 and infinitesimal variance pr
through a constant boundary S, under the condition that the process starts at Xg < S at time zero, is

a random variable (r.v.) T with probability density function (p.d.f.)

. 2, _I5-x! (8 = xo — ut)?
£(£:5,%x4,14,0°) —m exp ( - —2—0%———) (1)

Using the transformation a = (S — xg)/u and 8 = (S - xg)%/0? then T ~ IG(a,f) with p.d.f.

-
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h(t;a,8) = (2——5 exp(
Use of this transformation allows for the comparison of the results presented here with those given in

the literature cited above.

A lower value of x;) in the model (1) can be interpreted as better initial quality and thus longer
expected lifetime. Note that a change in x( causes a change in both of the parameters a and 8. For
instance, as x increases toward the threshold S, with i and o fixed, the p.d.f. becomes more positively
skewed and the mode and mean approach a value of zero. On the other hand, as the initial quality
becomes increasingly better, the p.d.f. becomes closer to a normal distribution in shape but with an

increasing mean and variance.



A lower value of y in (1) is, in the reliability interpretation, a slower rate of wear of the
product considered. Such a change influences only the parameter « in (2) and an increase of u decreases
the mean lifetime as well as its variance. While, for example, a two level mixture with respect to the
initial value can be interpreted as a production composed of two sets of items with different initial
quality; the dichotomous mixture with respect to y describes a production which is, at the initial stage

homogeneous, however, its speed to failure can be divided into two different groups.

Finally, a change of o3 is reflected in a cha.ﬁge of B in (2) and can be interpreted as the degree
of fluctuation in the wear process, due to say environmental conditions such as temperature. The mean
lifetime remains unchanged when o3 takes different values. From this fact the reliability interpretation
follows; the variability of the wear process and hence the variability of its lifetime is controlled by this

parameter while the mean lifetime remains constant.

In this text we concentrate primarily on the role of variable initial quality. In the context of
the drilling or tool wear problem, changes in x; reflect variability in individual cutting tools at the
time of insertion, changes in 4 may be due to variations in the material being cut, e.g., its hardness,
and changes in o? may reflect variations in environmental conditions. It is hoped that this work will

eventually be of use in developing compensators for tool-wear prooesaeas.

3. TWO LEVELS OF THE PARAMETERS

3.1 Two levels of the initial quality

Let us assume that x is replaced by the discrete r.v. X, for which P(X, = x0,1) = p and
P(Xy = x0’2) = 1 — p. Then the density of the lifetime distribution g(t) is a mixture of densities; -

expressed in terms of (1) it is

g(t) = p f(t;S,xo’l,u,a2) + (1-p) f(t;S,xo,g,u,v2) . ©)



From this fact all the properties of r.v. D distributed in accordance with (3) can be derived

E(D) = (S - (bxg,; + (1-P)xq ) = % (5 - E(Xp) (4)
Var(D) =§§(s - (g, + (1-p)%0) + EgPlxg; — 3 7 )

= u? (02 E(D) + p(1-p)(xy; - "0,2)2 )

(1~-p) (xg 1 — Xg )
Cvz(D) ____%2_(5 _ (pxo,l + (l_p)x0,2)).]_ +( p P xo,l x0,2 (6)

S - (pxp + (l-p)xo,g))2

Note that if ¢ > p > S — E(X) > 0, then CV > 1 analogous to the fixed initial condition case.

Usin:g (4), (5) and (8), the effect of the variability of the initial condition can be seen by the
following comparison of models (1) and (3) with identical parameters u and o. Set the value of the
fixed initial quality in model (1) equal to the mean initial quality in model (3). Then the mean
lifetimes of the two models are identical, but the variance of model (3) is larger than that of model (1)
by an amount equal to the second term in (5). The resultant CV in (6) is thus also larger than in
model (1) as is intuitively expected. Using (3), we can also compute several other characteristics
commonly used in reliability studies. For example, using equation (9.1) of Reference 7, the survival

function S(t) is

(5 —xg1 — mt) 2u(5-xg 1) (S—xp 1+ nt)
St)=p —r |~ e dg' )H -~ = +

(S —xp9 — nt) 2u(S—xq o) (5-xp9 +mt)
+ (1-p) B N (——) 9 - — (7
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where &(x) = (2x)1/3 / xexp(-y’/z)dy. The hazard rate, r(t), is obtained by combining (3) and (7),
and is notai:iom.lly cox;;?lcsted but computationally simple. For the model (1), the asymptotic value
of hazard rate is 04/ (2p(S—x0)3) as t tends to infinity. While for model (3) the asymptotic value of the
hazard rate is min (64/(2p(8—x0’i)3), which is the asymptotic hazard rate of the item with better

initial quality, i.e. lower value of Xy

The properties mentioned above are illustrated graphically in figures (1, 2, 3). For all three
plots, the values of S, u, and o are fixed at 10, 10, and 20 respectively. The effect of the mixing
parameter p on the shape of the p.d.f. (3) is shown in Figure 1, a semilog plot of the p.d.f. vs. lifetime
with Xp1 = —6 and Xp,2 = +6. The value 0 is taken here as a reference level for initial quality with
positive values, i.e. those closer to the threshold, being of a worse quality than those with negative
values. The middle three curves correspond to mixture distributions with p = 0.2, 0.4, and 0.8
respectively. The upper curve at early times represents an fixed initial value of + 6, i.e., p = 0, while p
= 1 corresponds to the lower curve at early lifetimes and represents a fixed initial value of —6. For the
three mixtures the early behavior of the p.d.f. is dominated by the mode corresponding to the initial
condition closest to the threshold, i. e. Xp9 - All five curves cross at the same point as expected from
(3). Only the p = 0.8 curve is bimodal, showing that the position of the lower initial condition can be
more difficult to ascertain from a visual inspection of the p.d.f. The general conditions for bimodality
of the p.d.f. are not known. The hazard rate may also be bimodal, but the five hazard rates

corresponding to figure 1 will not all intersect at the same value of time.

The decomposition of the mixture’s p.d.f. and hazard rate into two components is illustrated in
figure 2 for two sets of initial conditions. In A the mixture p.d.f. with p = 0.8 of figure 1 is shown
along with the two p.d.f.’s corresponding to a fixed initial value at Xp1 = -6 and X9 = 6. While 2A
is clearly bimodal, reducing the spread of the two initial values produces a mixture in figure 2B that is

barely bimodal even though the position of the early mode has only shifted slightly from A. In figure



2C,D, the corresponding hazard rates are shown. Unlike the p.d.f.’s, the hazard rates do not decompose

precisely into the sum of two components corresponding to fixed initial values at X0 1 and X0 9-
9 ¥

The final set of figures (figure 3) compare the mixture’s p.d.f. and hazard rate to the
corresponding curves from a single initial value. The single initial value is equal to the mean of the
mixture’s initial value. Figures 3A and 3B show that the most dramatic differences occur at early tirr;w
for both the p.d.f. and the hazard rate. Increasing the spread of the initial values from + 4 to + 6
produces even more pronounced differences at early lifetimes or failure times (figure 3 C,D). Here the
effect of model misspecification has some practical reliability consequences. The plots for the inixture in
3C,D might suggest a burn-in procedure for the product, while the corresponding curves for a single
initial value would not. As noted above, the variance for the mixture distribution is larger than that
for the corresponding fixed-initial-value curve. However, it is difficult to visually notice this increase in

figure 3 (2% in A, 4% in C).

3.2 Two levels of the rate of wear and its variability

Let us assume that u in (1) is now replaced by the r.v. M taking only positive values, with
P(M = ;10) =pand P(M = pl) = 1 — p. The positivity of p; ensures that D has a proper probability
distribution. In the same way as in (3), g(t) is a mixture of densities given by (1), but now with the

mixing parameter u. We have

BD)=(S- x(iy) 2 G-z gy ®

Var(D) = o5 - ::(,Xi5 + 3—5-1-?) + 91 - p)(S - xg (k- + ) ©)



Considering the parameter 2 of the model as a dichotomous r.v., again the density g(t) takes

a form similar to (3). This modification does not influence the mean first passage time for which we get
B(D) =~ (10)
which is the mean for the distribution given by (1), however,
Var(D) = s—;,— E(c?) (1)

from which we can see that this type of variability may not influence the lifetime distribution in a
straightforward way. For example, if 002 is close to zero and 012 is large, the density can be bimodal
and quite different in shape from the single Inverse Gaussian with parameter value E[o2]. Also note
that from (10) and (11), a condition followsv for CV > 1 similar to that following (6) with o replaced

by E[¢72]. Such a condition for the case with dichotomous u does not appear to be as straightforward.

uswwmﬁt&emimdmﬁvmwwhﬁm

The problem of parameter estimation is substantial for any verification of a statistical model.
Amoh? developed iterative procedures for maximum likelihood estimation of parameters in a mixture
of two IGD’s, He estimated the means and mixing proportion under the condition that the two Inverse
Gaussian populations had a common and known shape parameter (3 of (2)). This condition is met in
our problem only for the case with variable mean wear u. When there is variability in the initial value
or o2, the parameter 3 is not the same for both components of the mixture. An extension of Amoh’s
iterative maximum likelihood procedure appears to be quite complicated numerically. On the other
hand, if the initial quality can be measured directly, i. e., completely classified samples in Amoh’s

terminology, then the mixing proportion p is easily estimated as the relative frequency of Xp,1° Using



this estimated proportion, procedures for estimating u and o are well known'. If the values of XO are
not measured directly, then the method of moments could be used to estimate p, i, and o under the

condition that S is known (Reference 10, p.200).

At a more qualitative level, as noted by Amohg, it is difficult to decompose the mixture into
its components if xO,l/” ~ x0,2/"' or xO/ T xo/l‘r Difficult in the sense that a much larger
sample size is required to distinguish this case from a fixed initial condition. On the other hand, such a
misspecification of the model does not produce large differences between the shapes of the

corresponding p.d.f.’s.

4. CONTINUOUSLY CHANGING PARAMETERS.
Let us assume now that the initial condition X is a r.v. with p.d.f. w(x() defined on (—oo,S) . Then

the p.d.f. g(t) can be computed from the relationship

80 =[5 S xmeDw(sg)ixy (12)
~00

A uniform distribution of X, over (xo min’ S) can be interpreted as one type of controlled production

within a set of tolerance limits, where X0.mip 1# the minimum initial wear, i. e. best initial quality.
¥

Subestituting

w(xg) = (8 = xg min)! (13)

into (12) we obtain

8(t) = (KS = xg, min) | ECY(®), (14)

where Y is normally distributed with mean ut and variance o2t truncated at 0 and (S ) and

~ X0,min
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not normalized to be a proper p.d.f. on this interval.

An expression similar to (14) is obtained if we take the initial distribution to be uniform over
the range (xo,min’ xO,max) with X9 max < S. The interpretation is that we now have better control
over the initial quality. For other types of distributions for X, (e.g., truncated normal) (12) must be

calculated numerically.

Another easily interpretable model follows from the assumption that X, is exponentially

distributed over the range of initial qualities,

w(xg) = wexpl— (S - uxg)] (15)
then i
2 2 pt—o?ut a
8(0) = w exp{—tu( - ow/DH(k - 2)(1 - - L) + L EYO)), (16)
pt—v’wt

where E(Y(t)) ~ N(0,1), truncated on , 00). Its Laplace transform takes the form
at

2

wo
wo? - p + Jpu? + 2807 ()

g'e) =

and is suitable mainly for the evaluation of moments.

The continuous variability for the remaining parameters x4 and o can be treated in a mannet
similar to that for the variable initial quality and formulas analogous to (12) hold. An interpretable

example can be solved under the condition that M has uniform distribution over (s, 45;). Then

S—- S— S—
() =gﬁ7{o(f#<ul - 220Y) - oy - ). (18)
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The above examples are ones in which the p.d.f g(t) is readily evaluated. The moments for

other choices of w(xg) can be computed using (12), for example

E(D) = (S - E[Xq)/s- (19)

In a similar way, when u is a random variable, M, we have

E(D) = (S - xg) Elf] > (S - xo)/EM]. (20)

Higher order moments, e.g. variance, can be computed using the corresponding conditional moment

relationships.

Some method of parameter estimation is required for model validation. Maximum likelihood
estimates of the parameters in the density (12) can be easily computed when the observed data consists
of the pairs (x,t) = (’ﬁ’ti’ i=1,...,N) i.e., measurements of the initial quality, x;, and the lifetime, t;, on

N independent samples. They are

N N
p=3 %)/ 3 4 a)
i=1 i=1
2_1 N 6= N 2
7N i§1 5 i§1 (5-x) /i§1 i - @)

under the assumption that S is known. Note when the initial quality is fixed, i.e., x; = Xq, we get the
usual estimates, ji = (S — x;)/t and &= - xo)2 ((I/t) - 1/(?)) where bar denotes sample mean’.

It is well known that for fixed x the estimate of 4 is biased and the same holds for (21),

B() = u + By (s=2x) (2)
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5. DISCUSSION

Another way to view the model considered here is that there is heterogeneity among units,
with the heterogeneity being solely due to the initial condition. Follmann and Goldbergu have recently
examined the problem of distinguishing heterogeneity from decreasing hazard rates. They assumed that
the failure times for each rgpaira.ble unit had a Weibull distribution, and that the scale parameter of
the Weibull was Gamma distributed across units. The situation for the Inverse Gaussian model is more
complicated as the hazard rate with a fixed initial condition is nonmonotonic, the hazard rate first
increases and then decreases toward a nonzero asymptotic vdu?. The introduction of heterogeneity may
produce bimodal hazard rates and thus further complicate recommendations for inspection times

following replacement or burn-in times.

Mann et al. (szereﬁce 12, pp. 138-140) provide an introduction to mixture models for time to
failure problems. For motivation they consider devices with failures of two types: sudden or delayed,
and model- the failure distribution as a twofold mixed Weibull distribution. If the devices have a
nonzero asymptotic failure rate, then the dichotomous Inverse Gaussian mixtures considered here may

be appropriate as well.

Recently, Grego et al 13 proposed an interesting method to characterize mixture and pooled
distributions. They plotted the mean residual life on the failure rate. For mixed exponentials the
method worked well due to a decreasing failure rate and an increasing mean residual life. For the
dichotomous mixtures of Inverse Gaussian distributions, both of these properties are not present; yet
their work offers encouragement for the examination of further strategies to characterize such

distributions.
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FIGURE LEGENDS
Figure 1.
Semilog plot of p.d.f. from eqn. (3) for various values of mixture parameter. p is the
proportion of X1 Values of other parameter are u =10, 0 = 20, S = 10, X501 = —~6 and Xo,2
= +6.

Figure 2,

Decomposition of the mixture’s p.d.f. (A,B) and hazard rate (C,D) into two components.
xg,1 = =6 in (A,C) and —4 in (B,D) and with Xg2 = 6 in (A,C) and 4 in (B,D). p = 0.8, other
parameters as in Figure 1. p.d.f. from equation (3) and hazard rate from ratio of (3) to (7). Solid
curves - mixture, dashed curves - components.

Figure 3.

For the same two sets of initial quality as in Figure 2, a comparison of the mixture’s
p.d.f. and hazard rate is made with that of a single Inverse Gaussian having a fixed initial
condition with a value equal to the mean of the mixture’s initial quality. E[Xg] = —2.4 in (A,B)
and -3.6 in (C,D); also p = 0.8, other parameters as in Figure 1. Solid curves correspond to
mixture and dashed curves correspond to Inverse Gaussian distribution.
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