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SUMMARY

A mixture of Inverse GaU88ian distributions is examined as a model for the lifetime of components. The

components differ in one of three ways: in their initial quality, rate of wear, or variability of wear.

These three cases are well represented by the parameters of the Inverse GaU88ian model. The

mechanistic interpretation of the Inverse GaU88ian distribution as the first passage time of Brownian

motion with positive drift is adopted. The parameten considered are either dichotomous or continuous

random variables. Parameter estimation is also examined for these two cases. The model seems to be

most appropriate when the single Inverse Gaussian distribution model fails due to heterogeneity of the

initial component quality.

KEY WORDS Inverse G&U88ian distribution, Mixturea, Brownian motion, Hazard rate, Maximum

likelihood estimation

1. INTRODUCTION

The Inverse GaU88ian distribution (IGO) has been proposed and examined several times as a lifetime

model (e.g., References 1, 2, 3). It is particularly useful when the lifetime distribution reflects an initial

high rate of weu and failure via an early mode and poeitive skew; and the hazard rate first increases

and then decreuee to a nouero asymptotic level. One of ita advantages over other lifetime models

follows from its mechanistic interpretation as the firsi-passage-time across a constant boundary, S, of

Brownian motion4,5,6. In this interpretation the introduction of a random initial condition, XO' can be

viewed as a different quality assigned to each item at the moment of its production, and that

subsequent changes in quality (cumulative wear, fatigue, crack growth, etc.) can be modeled as a

Wiener process with positive drift (see e.g. Reference 4). Denoting this process by X(t) and the initial
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value X(O) by XO' then P(XO > S) becomes the probability that a new item is a defective one at the

moment of its production. For the sake of simplicity we further assume that P(XO > S) = 0, or that

this probability is negligible. In order to retain the physical interpretation of the model mentioned

above, we will use the parameterization from the diffusion-threshold viewpoint rather than that

commonly used. for the IGD (c.f., Reference 7).

2. FIXED PARAMETERS

The first passage time of a Wiener pr~ with drift I' > 0 and infinitesimal variance ~2 > 0

through a constant boundary S, under the condition that the pr0ce&8 starts at Xo < S at time zero, is

a random variable (r.v.) T with probability density function (p.d.f.)

2 IS-Xo I (S - Xo - I't)2)
f(t;S,Xo,I',O' ) =~ 2 3 exp - 2

2'l1"O' t 20' t

Using the trauaformatiOD 0 =(S - XO)/I' and {l =(S - XO)2/,,2 then T ,.,. IG(o,{l) with p.d.f.

1 ~{l - (let - 0)
h(tjo,{l) = (-::=!~ exp ( - 2 •

2rl 20 t

(1)

(2)

Use of this transformation allows for the comparison of the results presented here with those given in

the literature cited above.

A lower value of Xo in the model (1) can be interpreted u better initial quality and thus longer

expected lifetime. Note that a change in XO eatIIM a change in both of the parameters Q and fl. For

instance, 88 XO inCrea8e8 toward the threshold S, with I' and CT fixed, the p.d.f. becomes more positively

skewed and the mode and mean approach a value of zero. On the other hand, 88 the initial quality

becomes increasingly better, the p.d.f. becomes closer to a normal distribution in shape but with an

increasing mean and variance.
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A lower value of J.' in (1) is, in the reliability interpretation, a slower rate of wear of the

product considered. Such a change influences only the parameter a in (2) and an increase of J.' decreases

the mean lifetime 88 well 88 its variance. While, for example, a two level mixture with respect to the

initial value can be interpreted 88 a production compoeed of two sets of items with different initial

quality; the dichotomous mixture with respect to J.' describes a production which is, at the initial stage

homogeneous, however, its speed to failure can be divided into two different groups.

Finally, a change of (T'J is reflected in a change of Pin (2) and can be interpreted 88 the degree

of fluctuation in the wear procesa, due to say environmental conditions such 88 temperature. The mean

lifetime remains unchanged when (T'J takes different values. From this fact the reliability interpretation

follows; the variability of the wear process and hence the variability of its lifetime is controlled by this

parameter while the mean lifetime remains constant.

In this text we concentrate primarily on the role of variable initial quality. In the context of

the drilling or tool wear problem, changes in %0 reflect variability in individual cutting tools at the

time of insertion, changes in J.' may be due to variations in the material being cut, e.g., its hardness,

and changes in ~ may reflect variations in environmental conditions. It is hoped that this work will

eventually be of use in developing compensators for tool-wear processes8.

3. TWO LEVELS OF THE PARAMETERS

3.1 Two lev. of the iDitiai quality

Let us assume that XO is replaced by the discrete r.v. Xo for which P(XO = xO,I) = p and

P(Xo = XO,2) = 1 - p. Then the density of the lifetime distribution get) is a mixture of densities; 

expressed in terms of (1) it is

(3)
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From this fact all the properties of r.v. D distributed in accordance with (3) can be derived

E(D) =/J (S - (PXo,1 + (l-p) Xo,2») =/J (S - E(XO»)

(T2 ( ) P(1-p) 2
Var(D) =-w S - (PXC) 1 + (l-p)Xo 2) + 2 (XC) 1 - XC) 2)pO) , , p , ,

(4)

(5)

(6)

Note that if (T > p > S - E(XO) . > 0, then CV > 1 analogous to the fixed initial condition case.

Using (4), (5) and (6), the effect of the variability of the initial condition can be seen by the

following comparison of models (1) and (3) with identical parameter. p and (T. Set the value of the

fixed initial quality in model (1) equal to the mean initial quality in model (3). Then the mean

lifetimes of the two models are identical, but the variance of model (3) is larger than that of model (1)

by an amount equal to the llecOnd term in (5). The resultant CV in (6) is thus also larger than in

model (1) 88 is intuitively expected. Using (3), we can also compute several other characteristics

commonly used in reliability studies. For example, using equation (9.1) of Reference 7, the survival

function S(t) is

S(t) =p {J (S - Xo,1 - pt) ) 2p(S-Xo,I) J (S - Xo,1 + pt) )}
, e;Jt - exp ( (T2 ),- e;Jt +

{
J (S - Xo,2 - pt) ) 2p(S-Xo,2) J (S - Xo,2 + pt) ) }

+ (l-p) , o::Jt - exp ( 0-2 ),- O'<t (7)
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x
where .(x) =(211'r1/ 2J exp(-y2/2)dy. The hazard rate, r(t), is obtained by combining (3) and (7),

. -00

and is notationally complicated but computationally simple. For the model (1), the asymptotic value

of hazard rate is (J'4/(2P(S-XO)3) as t tends to infinity. While for model (3) the asymptotic value of the

hazard rate is mip «(J'4/(21o&(S-:xo i)3), which is the asymptotic hazard rate of the item with better
1 '

initial quality, i.e. lower value of XO'

The properties mentioned above are illustrated graphically in figures (1, 2, 3). For all three

plots, the values of S, 10&, and (J' are fIXed at 10, 10, and 20 respectively. The effect of the mixing

parameter p on the shape of the p.d.f. (3) is shown in Figure 1, a semilog plot of the p.d.f. vs. lifetime

with xO,l =-6 and XO,2 =+6. The value 0 is taken here as a reference level for initial quality with

positive values, i.e. thoee cloeer to the threshold, being of a wone quality than those with negative

values. The middle three curves correspond to mixture distributions with p = 0.2, 0.4, and 0.8

respectively. The upper curve ~ early time. represents an fixed initial value of + 6, i.e., p = 0, while p

= 1 corresponds to the lower curve ~ early lifetimes and represent. a fixed initial value of -6. For the

three mixtures the early behavior of the p.d.f. ia dominated by the mode corresponding to the initial

condition closest to the threshold, i. e. XO,2 • All five curve. ClC8 ~ the same point as expected from

(3). Only the p = 0.8 curve is bimodal, showing th~ the position of the lower initial condition can be

more difficult to ascertain from a visual inspection of the p.d.f. The general conditions for bimodality

of the p.d.f. are not known. The hazard rate may also be bimodal, but the five hazard rates

corresponding to figure 1 will not all intersect ~ the same value of time.

The decomposition of the mixture's p.d.f. and hazard rate into two components ia illustrated in

figure 2 for two sets of initial conditions. In A the mixture p.d.f. with p =0.8 of figure 1 is shown

along with the two p.d.f.'s corresponding to a fixed initial value ~ XO,l = -6 and xO,2 = 6. While 2A

is clearly bimodal, reducing the spread of the two initial values produces a mixture in figure 2B that is

barely bimodal even though the position of the early mode has only shifted slightly from A. In figure
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2C,D, the corresponding hazard rates are shown. Unlike the p.d.f.'s, the hazard rates do not decompose

precisely into the sum of two components corresponding to fixed initial values at xO,1 and XO,2.

The final set of figures (figure 3) compare the mixture's p.d.f. and hazard rate to the

corresponding curves from a single initial value. The single initial value is equal to the mean of the

mixture's initial value. Figures 3A and 3B show that the IIlO8t dramatic differences occur at early times

for both the p.d.f. and the hazard rate. Increasing the spread of the initial values from ± 4 to ± 6

produces even more pronounced differences at early lifetimes or failure times (figure 3 C,D). Here the

effect of model misspecification has some practical reliability cooaequences. The plots for the mixture in

3C,D might suggest a burn-in procedure for the product, while the corresponding curves for a single

initial value would not. As noted above, the variance for the mixture distribution is larger than that

for the corresponding fixed-initial-value curve. However, it is difficult to visually notice this increase in

figure 3 (2% in A, 4% inC).

Let us assume that JJ in (1) is now replaced by the r.v. M taking only positive values, with

P(M =JJO) =P and P(M =JJl) =1 - p. The positivity of JJi enaures that D has a proper probability

distribution. In the same way as in (3), g(t) is a mixture of densities given by (1), but now with the

mixing parameter JJ. We have

Var(D) = tr~S - xoX~ + 1 - K) + p(1 - pJS - Xo\11J +k)
JJO JJI "\) \ 0 1

(8)

(9)
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Considering the parameter ,,2 of the model 88 a dichotomous r.v., again the density get) takes

a form similar to (3). This modification does not influence the mean first passage time for which we get

S -x..
E(D) = jJ --u

which is the mean for the distribution given by (1), however,

S - xo
Var(D) = 3 E(,,2)

p

(10)

(11)

from which we can see tJiat this type of variability may not influence the lifetime distribution in a

straightforward way. For example, if "02 is cloee to zero and "12 is large, the density can be bimodal

and quite different in shape from the single Inverse GaU88ian with parameter value E[,,2]. Also note

that from (10) and (11), a condition foUo.. for CV > 1 similar to that foUowing (6) with" replaced

by ~E[,,2]. Such a condition for the cue with dichotom0U8 p doe8 not appear to be 88 straightforward.

The problem of parameter estimation is substantial for any verification of a statistical model.

Amoh9 developed iterative procedures for maximum likelihood estimation of parameters in a mixture

of two IGD's. He estimated the meana and mixing proportion under the condition that the two Inverse

Gaussian populations had a common and known shape parameter (fJ of (2». This condition is met in

our problem only for the case with variable mean Weal Po When there is variability in the initial value

or ,,2, the parameter fJ is not the same for both component. of the mixture. An extension of Amoh's

iterative maximum likelihood procedure appears to be quite complicated numerically. On the other

hand, if the initial quality can be measured directly, i. e., completely claasified samples in Amoh's

terminology, then the mixing proportion p is easily estimated 88 the relative frequency of XO,l. Using
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thia estimated proportion, procedures for estimating I' and " are well known7• If the values of Xoare

not measured directly, then the method of moments could be used to estimate p, 1', and " under the

condition that S is known (Reference 10, p.200).

At a more qualitative level, as noted by Amoh9, it is difficult to decompose the mixture into

ita components if XO,11I' lllf XO,211', or xo!l'l lllf xo!1J2. Difficult in the sense that a much larger

sample size is required to distinguish thia case from a fixed initial condition. On the other hand, such a

misspecification of the model does not produce large differences between the shapes of the

corresponding p.d.f.'8.

4. CONTINUOUSLY CHANGING PARAMETERS.

Let us assume now that the initial condition Xo is a r.v. with p.d.f. w(XO) defined on (-oo,S) . Then

the p.d.f. g(t) can be computed from the relationship

get) = f S f(t;StXo'I',,,2)w(Xoldxo
-00

(12)

A uniform distribution of Xoover (Xo,min' S) can be interpreted 88 one type of controlled production

within a set of tolerance limits, where Xo,min ia the minimum initial wear, i. e. best initial quality.

Subetituting

into (12) we obtain

get) =(t(S - Xo,min)!IE(Y(t»,

(13)

(14)

where Y is normally distributed with mean I't and variance ,,2t truncated at 0 and (S - Xo .) and,mIn
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not normalized to be a proper p.d.f. on this interval.

An expre88ion similar to (14) ia obtained. if we take the initial distribution to be uniform over

the range (:XO,min' :XO,max) with :XO,max < S. The interpretation ia thai we now have better control

over the initial quality. For other types of distributioDS for Xo (e.g., truncated normal) (12) must be

calculated numeric:a11y.

Another easily interpretable model follows from the 888umption that Xo is exponentially

distributed. over the range of initial qualities,

w(:xo) =wexp(- (S - WXO)]

then

get) = w exp{-tw(p - CT2w/2)~(p - CT2W)(1 - +(- pt~wt » + ft E(Y(t»},

pt-u2wt
where E(Y(t» ,... N(O,1), truncated. on ( crJt' 00). Ita Laplace transform takes the form

and is suitable mainly for the evaluation of momenta.

(15)

(16)

(17)

The continuous variability for the remaining parameters I' and CT can be treated. in a manner

similar to that for the variable initial quality and formulaa analogou to (12) hold. An interpretable

example can be solved. under the condition that M hu uniform disiribution over (PO' 1'1). Then

(18)
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The above examples are ones in which the p.d.f g(t) is readily evaluated. The moments for

other choices of w(xo) can be computed using (12), for example

E(D) =(5 - ElXol)1JJ.

In a similar way, when JJ is a random variable, M, we have

E(D) = (5 - xo) Elk] ~ (5 - XO)/E[M].

(19)

(20)

Higher order moments, e.g. variance, can be computed using the corresponding conditional moment

relationships.

Some method of parameter estimation is required for model validation. Maximum likelihood

estimates of the parameters in the density (12) can be easily computed when the observed data consists

of the pairs (x,t) = (~,ti' i=l,...,N) i.e., measurement. of the initial quality, ~, and the lifetime, ti, on

N independent samples. They are

N N
jJ. = E (5-~) lEt.

i=l i=l I

(21)

N 2 NE (5-~) lEt.
i=1 i=l I

(22)

under the assumption that 5 is known. Note when the initial quality is fixed, i.e., ~ = XO' we get the

usual estimates, jJ. = (5 - xo)(£ and u2 = (5 - XO)2 (lIt) - 1/(i'») where bar denotes sample m~7.

It is well known that for fIXed xo the estimate of JJ is biased and the same holds for (21),

(21)
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5. DISCUSSION

Another way to view the model considered here is that there ia heterogeneity among units,

with the heterogeneity being solely due to the initial condition. Follmann and Goldbergll have recently

examined the problem of diatinguiahing heterogeneity from decreasing hazard rates. They assumed that

the failure times for each repairable unit had a Weibull diatribution, and that the scale parameter of

the Weibull was Gamma diatributed acrose units. The situation for the Inverse Gaussian model is more

complicated as the hazard rate with a fixed initial condition ia nonmonotonic, the hazard rate first

increases and then decreases toward a nonzero asymptotic value. The introduction of heterogeneity may

produce bimodal hazard rates and thus further complicate recommendations for inspection times

following replacement or burn-in times.

Mann et ale (Reference 12, pp. 138-140) provide an introduction to mixture models for time to

failure problems. For motivation they cooaider devices with failures of two types: sudden or delayed,

and model the failure diatribution as a twofold mixed Weibull diatribution. If the devices have a

nonzero asymptotic failure rate, then the dichotomous Inverse Gaussian mixtures considered here may

be appropriate as well.

Recently, Grego et al.13 propoeed an interesting method to characterize mixture and pooled

diatributions. They plotted the mean residual life on the failure rate. For mixed exponentials the

method worked well due to a decreasing failure rate and an increasing mean residual life. For the

dichotomous mixtures of Inverse Gaussian diatributiooa, both of these properties are not present; yet

their work otTers encouragement for the examination of further strategies to characterize such

distributions.
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FIGURE LEGENDS

Figure 1.

Semilog plot of p.d.f. from eqn. (3) for various values of mixture parameter. p is the

proportion of xo,l Values of other parameter Ke JJ =10, iT =20, S =10, xo,l = -6 and xo,2

= +6.

Figure 2.

Decomposition of the mixture'. p.d.f. (A,B) and hazard rate (C,D) into two components.

XO,l =-6 in (A,C) and -4 in (B,D) and with XO,2 =6 in (A,C) and 4 in (B,D). p =0.8, other

parameten .. in Figure 1. p.d.f. from equation (3) and hazard rate from ratio of (3) to (7). Solid

curves - mixture, dashed curves - components.

Figure 3.

For the 8&Dle two sets of initial quality .. in Figure 2, • comparison of the mixture's

p.d.f. and hazard rate is made with that of a single Inverse GaU88ian having a fixed initial

condition with a value equal to the mean ofthe mixture'. initial quality. E[Xol = -2.4 in (A,B)

and -3.6 in (C,D); also p = 0.8, other pgameten .. in Figure 1. Solid curves correspond to

mixture and dMhecl curves correBpOIld to Invene Gau.ian diatribution.
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