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Abstract

It is known that the kernel methods based on local constant fits are not design

adaptive. That is, the bias of these estimators can have an adverse effect when the

derivative of marginal density or regression function is large. The issue is examined by

considering a class of kernel estimators based on local linear fits. These estimators have

the ability of design-adaptation and can be used to estimate conditional quantiles and

to robustify the usual mean regression. The conditional asymptotic normality of these

estimators are established. Applications of such a generalized local linear method are

discussed.
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1 Introduction
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The method of nonparametric regression has received a great deal of attention lately, due

mainly to its flexibility in fitting data. Most of the methods have developed so far are

based on the mean function. However, new insights about the underlying structures can be

gained by considering functions other than the mean. In this paper, we propose a general

nonparametric framework for examining the effect of a covariate and the response using

smooth functions such as mean, median, percentile and robust models.

To estimate the effect of a covariate on a response variable, one may choose, depending

upon the situation under investigation, the conditional mean function or, the median, the

percentile and robust models when outliers are present. For example, nonparametric mean

regression is a method of estimating the effect of a covariate on a response variable when

the conditional mean function is smooth. In data analysis involving asymmetric conditional

distribution such as income data or housing value or exponential models (GLIM), it appears.

much more appealing to work with the conditional median, since results can be more easily

interpreted.

To model the relationship between the response and the covariate, one chooses the

function m(·) depending upon the situation under investigation. The function m(·) should

reflect certain desired properties such as median in dealing with skewed distribution or

robust estimate when there are outliers, and is defined through the conditional distribution

or even the distribution itself. More specifically, let £(.) denote a positive function on 3(1,

define mt(x) so that it minimizes (with respect to a)

That is,

E(£(1' - a)IX = x). ( 1.1)

( 1.2)

For example, for £( z) = z2 the function mt(x) is the regression function m( x) = E(1' IX =
x), £(z) = Izlleads to the conditional median function m(x) = med(1'IX = x); the pth-
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percentile function is obtained by choosing l(z) = pz+ + (1- p)z- and function arises from

robust issues by choosing l(·) so that £1(.) = 1/J(.). See Hampel, et al. (1986) and Huber

(1981) or Section 4.4 for examples of the functions 1/J(.).

2 Design Adaptive Smoothers

Given a random sample (Xl, YI ), ... , (Xn , Yn ) from the distribution of (X, Y), the estimator

of m.e( x) is defined by

where hn is a bandwidth. See HardIe (1984), HardIe and Gasser (1984) and Hall and Jones

(1990). In special cases, this method leads to kernel estimators based on local averages,

local median, local percentile and local M-estimators, depending on the choice of l(·). A

careful examination of these procedures reveals a rather unpleasant hidden fact. Namely, the

asymptotic bias depends on the derivative of the marginal density. A practical implication

of this is that this estimator is not adaptive to certain design of covariate. It turns out that

this is not the intrinsic part of nonparametric regression, but rather an artifact of kernel

methods based on local constant fits!

To remedy the problems encountered in the approaches based on local constant fits, in

this paper, we propose a general framework based on design adaptive approach which uses

local linear or polynomial fits for a variety of loss structures that greatly generalizes the

case of regression function (the conditional mean) estimation.

Define an estimator by setting m.e(x) == m.e,n(x) = a, where a and bminimize

(2.1 )

See also Tsybakov (1986) for a motivation of and a discussion on this estimator. To see the

usefulness of this estimator, set l(x) = x2
• Then the proposed estimator has a number of

desirable properties. Estimator (2.1) has has high efficiencies among all smoothers, both
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linear and nonlinear (Fan, 1991a). Moreover, Fan (1991b) shows that the estimator with a

suitable choice of J( and hn is the best linear smoother and adapt to a wide variety design

densities. It is also known that the estimator does not have unpleasant boundary effects.

Se0 Fan and Gijbels (1991) and Section 4.1 for further discussion.

Based on the adaptability of these estimators to a large class of design densities and to

boundary points, we refer to estimators defined by (2.1) as design adaptive estimators.

To obtain these estimates, depending upon the functional form of £('), we mayor may

not have solutions in closed form to the above minimization problem. We will offer two

approaches to this numerical issue:

• obtain the estimates by directly optimize the above function through special software

development,

• approximate £(.) by a smooth £€('), and then obtain the solutions using £€(.) by Taylor

expansion (recall the scoring method).

The latter option is extremely useful when the function £(.) is not differentiable such as the

absolute deviation loss. Justification for this procedure will be given in terms of efficiency

based on asymptotic variances.

There is a huge literature on smooth estimates of the regression function or the condi

tional mean function. The methods range from local averages to local linear or polynomial

fits. Parallel studies for conditional median estimation appear to be much less developed.

One of contributions of this paper is to bring attentions to this generalized local linear

method. This method has design and boundary adaptation, and can take into robustness

as well as asymmetry of error distribution. For finite sample, Fan (1991b) shows via simula

tion that estimator (2.1) with l( x) = x2 has advantages over other kernel methods, namely,

the Nadaraya-Watson and the Gasser-Muller estimator.
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3 Asymptotic Properties
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To establish the sampling properties of these estimators for a general f(·), we first assume

that f(·) is twice differentiable and that the function mA') has a second derivative. It

is then shown by Taylor expansion that the resulting estimators have the usual bias and

variance decomposition. The variance term is the same as obtained by the ordinary kernel

methods. However, the bias of our proposed estimators does not contain the derivative of

the marginal density lx, a property which is not shared by the the ordinary kernel methods

based on local constant fits. This has the following implications:

• faster rates of convergence can be achieved without imposing extra smoothness con

dition on the marginal distribution,

• data-driven bandwidth selection does not involve the effort to estimate the derivative

of the marginal density.

• bias of estimate is dramatically reduced at the locations where either Ix (x) or mt(x)

is large.

For nondifferentiable f(·) such as the absolute deviation loss, we first approximate it by

a very smooth ff(') which converges uniformly to f(·) as € -- O. Then obtain our estimators

using ff(')' For a given data set, this means practically that the estimators obtained from

f(·) do not differ much from those using ff('), since f(·) can be approximated arbitrarily

close by ff(')'

The estimators also have asymptotic normality which will then be used to construct

confidence intervals for inferential purposes. Let I(x) == Ix(x) be the density function of

X and g( y Ix) be conditional density function of Y given X = x.



July 14, 1991

Conditions

1. The kernel K (.) 2: 0 has a bounded support, and satisfies

1
+00 1+00

-00 K(y)dy = 1, -00 yK(y) dy = O.

2. The density function f(-) of X is continuous and bounded from below at x.

6

3. The conditional density function g(ylx) of Y given X = x is continuous in x for each

y and it is bounded from below, i.e. g(ylx) > O.

4. The function m£(·) has a continuous second derivative.

5. The function i(·) 2: 0 has bounded two derivatives and f"(.) is nonnegative and

uniformly continuous. Moreover,

Ji"(y - m£(x))g(ylx)dy -I 0

and there is a positive constant 8 > 0 such that

Jli(2y)1 1+Og(ylx)dy < 00 and JIf'(y - m£(x))1 2+Og(Ylx)dy < 00.

Theorem 1 Suppose Conditions 1-5 hold and that nhn -+ 00 and hn -+ 0, the estimator

(2.1) has an asymptotic normality:

p (m£(x) - m£(x) - /3n(x) < t IX '" X ) = <I>(t) + o' (1) (3.1)Jr2(x)J(nhn) - 1, ,n P

where <I> ( .) is the standard normal distribution function and

~h~m1(x)Jv2K(v)dv,

JJ(2(v)dv J[i'(y - m£(x))j2g(ylx)dy
=

f(x) (J i"(y - m£(x))g(ylx)dyf'

(3.2)

(3.3)
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The conditional asymptotic normality has better interpretability than the unconditional

one: experimenters wish such an approximation holds for their given data instead of for

the overall experiments. Moreover, expression (3.1) implies the unconditional asymptotic

normality:

p (ml(X) - ml(X) - 13n(X) < t) = ~(t) + 0(1),
Vr2 (x)j(nhn ) -

by the dominated convergence theorem. This unconditional result is comparable with that of

Tsybakov (1986), who dealt with the problem for homoscadecity regression model (q2(x) ==

(2) whose design density has a bounded support. These two restrictions are not required

in Theorem 1. Thus, Theorem 1 can be viewed as a further development to his work.

Note that the 'asymptotic bias' 13n(x) of the proposed estimator depends only on the

function being estimated. This is natural from the construction of the design adaptive

estimation point of view - the bias came from the error in the local approximation of

the underlying curve by a linear function. On the other hand, the asymptotic variance

however depends on the function f(·). For example, the asymptotic variance of the local

mean estimator differs from that of the local median estimator, which is consistent with the

univariate case.

In the sequel, we will discuss consequences and applications of this theorem. These

include estimation of the regression, the conditional median and the conditional quantile

functions as well as roust nonparametric function estimation.

4 Applications

Theorem 1 has a wide variety of applications depending on the choice of f(·). It covers

the regression problems based on the conditional mean, conditional median or percentiles,

and robust functionals. Each of these cases will be discussed in details in this section. As

previously noted, (XI, Yd, ... , (Xm Yn ) is a random sample from the distribution of (X, Y).

We begin with the case of conditional mean.
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For convenience, we use the notation

8

to denote expression (3.1). Here, "'c means asymptotic distribution conditional on Xl, ... , X n .

4.1 N onparametric Regression

Set f(·) = (.)2 in (1.2). Then m(x) = mt(x)

minimize

E(YIX x). Note that a and b now

'"" 2 ... (Xi - X)G(a,b) = ~(Yi - a - b(Xi - x)) It h
n

•

J

Thus
n n

m(x) = a= LWn,j}j/LWn,i,
1 1

where

(
X, - X)

Wn,i = J( ~n (Sn,2 - (Xi - X)Sn,l)

and

~ ... (Xi - X) ( )1
Sn,l =~ It h Xi - X ,

1=1 n

l = 1,2.

It was shown by Fan (1991b) that the estimator is the best among linear smoothers and has

the ability to adapt to a wide variety of design densities. The latter follows from the fact

the bias of the estimator does not contain the marginal density. See (3.2). Furthermore,

it is known that the estimator adapts to both random and fixed designs, and even to both

interior and boundary points of the support of the design density. That is, the estimator

does not have boundary effects as indicated by Fan and Gijbels (1991). The following result

is a direct consequence of Theorem 1.

Theorem 2 Suppose Conditions 1-4 hold and that nhn - 00 and hn - 0, then

. (r2(X))m(x) - m(x) "'c N f3n(x), nh
n

'
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where

J3n(x) = ~h~m"(x) J v2J((v)dv,

r2(x) !(X)-l J J(2(v)dv· J(y - m(x))2g(ylx)dy.

9

(4.1)

(4.2)

This conditional asymptotic normality, to our knowledge, appears to be new even in the

mean regression setup. For fixed design case, see Muller (1987) for a related result.

To get some insight about the asymptotic bias (4.1) and variance (4.2), consider the

following kernel estimator [see Nadaraya (1964) and Watson (1964)]:

Note that this is a special case of the design adaptive estimator, and is obtained from (2.1)

by setting b = o. It has been shown [see, for example, Table 3.6.2 of HardIe (1990)] that

~his estimator has an asymptotic bias and variance given respectively by

h2 .

2!(x)(m"(x)!(x)+2m'(x)!'(x)) J v2J((v)diJ,

(nhn!(x))-l J J(2(v)dv. J(y - m(x))2g(ylx)dy.

The dependence of the bias term on the marginal density !(x) makes this estimator not

design adaptive.

4.2 Percentile Regression and Predictive Intervals

Let 0 < P < 1. The pth conditional quantile, F-1(pIX = x), is the pth quantile of the condi

tional distribution F(·IX = x). According to Hogg (1975), this is called regression problems

based on weighted absolute error loss or simply percentile regression. Applications of per-

centile regression are many. For example, a useful alternative to regression problem based

on the mean is the regression with the conditional median function m(x) = med(YIX = x)

(Truong, 1989), which is a percentile regression with p = 1/2. As in the univariate case, the

conditional quantiles can be used to study the conditional distribution. The most impor-

tant application of percentile regression is the estimation of predictive intervals in prediction
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theory. More specifically, in predicting the response from a given covariate X = x, esti-

mates of F-l(a/2Ix) and F-l(1- a/2Ix) can be used to obtain 100%(1- a) nonparametric

predictive interval. This can naturally be compared with approaches based on parametric

models, which lack the ability to deal with the bias arising from the misspecification of the

model.

The conditional quantiles defined above can be put into the framework of design adaptive

by choosing the function f(·) appropriately. Suppose it is desired to estimate the pth

conditional quantile m(x). Then m(x) can be obtained from (1.2) by setting f(y) = py+(l

P)y-. The design adaptive estimator can be constructed simply using this function f(·).

This estimator seems natural but its sampling properties can not be analyzed directly

from Theorem 1, as fO is not differentiable. As noted before, the approach based on

approximating f(·) by a smooth function will be adopted here.

Let k and .1 be positive integers such that 1 > k ~ 1. Let € denote a positive constant.

Set

_ I x k +!

f(x) = (1- k)(k + 1) €k

Define

k xl+! k +1+1
- €

(I - k)(I + 1) €I (l + 1)(k + 1) ,
x E [O,€].

-qx, if x ~ -€

f£(x) =
ql( -x), if -€ ~ x ~ 0

pl(x ), if 0 ~ x ~ €

px, if € ~ x,

where q = 1 - p. Note that f£(.) is twice differentiable and f£(x) - Ixl as € - 0 for all x.

Define mlAx) to be the solution of the optimization problem (1.2), and suppose aand

bminimize (2.1), where the function f(·) in (1.2) and (2.1) are replaced by the above ff(')'

Set ml,f(x) = a.

Theorem 3 Suppose Conditions 1-4 hold and that hn - 0, nhn - 00. Then
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where

!h2m" (x) Jv2J((v)dv2 n l" ,

f J(2(v)dv f[f~(y - mlAx))]2g(ylx)dy

f(x) (Jf~(y-ml,,(x))g(Ylx)dyr'

Moreover,

2() f J(2(v)dv f[f~(y - m(x))Fg(ylx)dy f J(2(v)dv p(l- p)
T x - --+ as E --+ O.
, - f(x) (Jf~(y-m(x))g(Ylx)dy)2 f(x) [g(m(x)lx)J2

11

(4.3)

To give insight for the asymptotic bias and variance given above, consider the ordinary

kernel estimator defined by

m(x) = F;l(plx),

where
(

X x)Ej J( r 1(1";' ~ y)
Fn(ylx) = (X)""'.J( ~

WI hn

According to Bhattacharya and Gangopadhyay (1990), this estimator has an asymptotic

bias depending on the marginal density, indicating that it is not a design adaptive estima-

tor. Also, it can be shown that {f(x)[g(m(x)lxW}-lp(l- p) f J(2(v)dv is the asymptotic

variance of the above estimator, (4.3) indicates that this variance is approximated well by

the variance of the design adaptive estimator.

4.3 Robust Smoothers

It is known in the robustness literature that the mean is sensitive to outliers. See Hampel,

et al. (1986) and Huber (1981). Since the local average estimator is basically a mean type

estimator, it is also sensitive to outliers. To robustify this procedure, it is suggested that

the function l(·) be chosen so that its derivative is given by

-1, ify~-c

7/J(y) = y/c, if Iyl ~ c

1, if c ~ y.
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That is, 7/J(y) = max{ -1,min{yjc, 1}},c > O. See Huber (1981).

12

There has been a great deal of univariate robust inferences based on these functions.

For details, see the books mentioned above. For the regression setup, the above 7/J functions

provide useful tools for robustifying design adaptive nonparametric estimators. This can be

achieved by simply replacing the function l(·) in (1.1) and (2.1) by these 7/J functions. Note,

however, 7/J(.) is not differentiable, the sampling properties of the design-adaptive estimator

will be analyzed (via Theorem 1) based on the approximation device discussed in previous

sections.

Huber's 7/J(.) can be approximated as follows. Let

-c, if y ~ -c

l~(y) = y, if Iyl ~ c - E

c, if c ~ x.

Then l((·) is twice differentiable and l((x) -- Ixl as E -- 0 for all x.

Assume that the conditional density g(ylx) is symmetric about m(x). Then m(x) min

imizes (1.1). Let a and b minimize (2.1), where the function l(·) in (1.1) and (2.1) are

replaced by the above l((·). Set me,((x) = a.

Theorem 4 Let g(ylx) be symmetric about m(x). Suppose that Conditions 1--4 hold and

that hn -- 0, nhn -- 00. Then

where

~h~m"(x) Jv2
J(( v)dv,

J J(2( v)dv J[l~(y - m(x ))j2g(ylx )dy

f(x) (J l~(y - m(x))g(Ylx)dYf'
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Moreover,

2 J J(2( v )dv var (1P(Y - ao)IX = x)
T~ (x) ---+ () 2

f x (E(1/r'(Y - ao)IX = x))
as f ---+ O.

13

(4.4)

To gain further insight about the bias and variance given above, consider the robust

nonparametric estimator examined by HardIe and Gasser (1984), HardIe (1984) and Hall

and Jones (1990), which can be obtained from (2.1) by setting b = o. Their estimators

have a bias depending upon the marginal density, and is improved by our design adaptive

estimator whose bias is not a function of f( x). Furthermore, (4.4) indicates that the variance

of the design-adaptive estimator tends to the variance of their kernel estimators.

5 Discussions

In the regression approach based on conditional means, Stone (1977) and Cleveland (1979)

considered the local linear fits and indicated that there ·are practical" advantages over the

local constant fits. This can be easily seen when the underlying regression is linear. This

was further confirmed by Stone (1980, 82), Fan (1991a, b), and Fan and Gijbels (1991).

This issue is reinforced in the present paper by using a general (smooth) kernel method

which also includes robust approaches to nonparametric regression. In particular, results

in Section 4 had generalized previous results obtained by HardIe (1984), HardIe and Gasser

(1984), Truong (1989), Bhattacharya and Gangopadhyay (1990), Hall and Jones (1990) to

local linear fits. They also constituted a partial answer to Question 4 of Stone (1982).

A somewhat restricted approach was considered by Tsybakov (1986) in which only

regression analysis involving homoscedastic and symmetric conditional distributions was

examined. Our present investigation indicates that these restrictions are not necessary

and some of the conditions in Tsybakov can be further simplified. Also, stronger results

on conditional asymptotic normality are established, as discussed after Theorem 1. These

conditional results have better interpretability.
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6 Bandwidth Selection

From Theorem 1, one would naturally choose a bandwidth hn to minimize

14

where w(·) is a nonnegative function with a bounded support. This yields an optimal

bandwidth

( )

1/5

J!~o}(X)f-l(X)W(X)J!~J(2(v)dv -1/5
hn opt = 2 n ,

, J!"~(ml(x))2w(x)dx [J!~ v2J((v)dv]

where

/
+00 (/+00 )-2O'i(x) = -00 (l'(y - me(x)))2 g(ylx)dy -00 l"(y - me(x))g(ylx)dy

See also Fan and Gijbels (1991) for discussions on how to incorporate the estimator me(x)

with a variable bandwidth. Practical implementation of the estimator me(x) involves choos-

ing. a bandwidth either subjectly by data analysts or objectly by data itself. We believe

both choices are reasonable - if the scientific conclusions are drawn substantially differ-

ently from the analysis of a set of data because of the methods of choosing bandwidth, we

would be cautious for the insufficient information in the data to differentiate those possible

conclusions.

7 Proofs

The proof of Theorem 1 depends on the following arguments as well as Lemmas 1-5.

Recall that (iL, b) minimize

(
X, - X)

Ll(l'i - a - b(Xi - x))J( ~n .

Then

Ll'(l'i - iL - b(Xi - x))J( (Xi
h
: X)

Ll'(l'i - iL - b(Xi - X))(Xi - x)K C\i
h
: X)

0,

o.

(7.1 )

(7.2)
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Recall ao == ao(x) minimizes E(£(Y - a)!X = x) and bo == bo(x) = a~(x). The following

result indicates that a is a consistent estimator of ao.

Lemma 1 Suppose Conditions 1-5 hold and that hn -+ 0, nhn -+ 00,

ao - a= op(l) and hn(bo - b) = op(I).

Proof Note that E(I£(2Y)1 1+OIX = x) < 00 implies conditions (2.4) and (2.5) in

Theorem 1 of Tsybakov (1986). Hence the result follows. 0

Applying the mean value theorem to the function £'(.) in (7.1) and (7.2), we obtain

I:{ f'(Yi - ao - bO(Xi - x))

+£I/(~n,d(ao - a+ (bo - b)(Xi - x)) }K (X~: X) = 0, (7.3)

and

I:{f'(Yi - ao - bO(Xi - x))

+f"(~n,i)(ao - a+ (bo - b)(Xi - x)) }(Xi - x)K (Xi
h
: X) = 0, (7.4)

where ~n,i lies between Yi - a- b(Xi - x) and Yi - ao - bO(Xi - x). Set

Sj I:f'(Yi - ao - bo(Xj - X))(Xi - x)j K (X~: X) ,

Sj I:f"(~n'i)(Xi-X)jK(X~:X), j=0,1,2.

Solving linear equations (7.3) and (7.4) yields that

(7.5)

Denote

sj = I:f"(Yi - ao)(Xi - x)i K (Xi
h
: X) ,

Recall f(x) = fx(x).

j = 0,1,2.
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Lemma 2 Under Conditions 1 and 5,

E(sj) = nh~+If(x) jf"(y-ao)g(y1x)dy j vjJ((v)dv(1+0(1))

var(sj) = nh~j+I f(x) j[t/(y - ao)j2g(ylx)dy j v2j J(2(v)dv(1 +0(1)),

Moreover,

Sj = sj +op(nh~+I), j = 0,1,2.

Proof By Condition 1 with J((.) having a compact support, we have

// ( )j __ (Xl - X)E(sj) = nEf (YI - ao) Xl - X It h
n

= n j j f//(y - ao)(t - x)j J( C~nX) g(ylt)f(t)dydt

= n j j f//(y - ao)h~+Ivj J((v)g(ylx + hnv)f(x + hnv)dydv

= nh~+If(x) jf//(y-ao)g(y1x)dy j vjJ((v)dv(1+0(1)).

A similar argument leads to

var(sj) = n j j (f.'/(y - ao)(t - x)j J( C~nX)) 2 g(ylt)f(t)dydt - (Esj)2

= nh~j+If(x) j[f"(y-ao)]2g(Y1 X)dY j v2j J(2(v)dv(1+0(1)).

To prove (7.6), note that

16

(7.6)

where In == In(x) = {i: !Xi -xl ~ Mhn} and M is an endpoint of the support of J((.). By

Lemma 1,

ao - a= op(1) and

Since ~n,i lies between Yi - a- b(Xi - x) and Yi - ao - bO(Xi - x), by Condition 5

sup If."(~n,i) - f//(Yi - ao)1 = op(1).
iEln

Note that

(7.8)

(7.9)
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where Fn (·) is the empirical probability distribution function based on Xl, ... , X n . It follows

from (7.8) and (7.9), together with the boundedness of the function vi J(( v), that

" 1"( )"( )1 (Xi - X)J ,,(Xi - X) ()L..J " ~n,i -£ Yi - ao h It h = op nhn .
iEln n n

(7.10)

o(7.6) now follows from (7.7), (7.9) and (7.10). This completes the proof of Lemma 2.

Lemma 3 Suppose Conditions 1 and 5 hold, and that nhn -+ 00. Then

j = 0,1,2. (7.11)

where Cj(x) = f(x) f l"(y - ao)g(ylx)dy fvjJ((v)dv. Moreover,

Proof By Lemma 2,

(7.12)

sj = E(sj) + Op (vvar(sj))

= nh~+lf(x) jl"(y-ao)g(y1x)dy j vj J((v)dv(1+o(1)) +Op(Vnh;/+l)

= nh~+lf(x) jt'(y-ao)g(y1x)dy j vjJ((v)dv(1+op(1)).

This together with (7.6) implies (7.11). Using (7.11) and the fact that fvJ((v)dv = 0, we

obtain (7.12). 0

Lemma 4 Let X = (Xl'·" ,Xn ), then under Conditions 1, 4 and 5,

E(SjIX) = dj(x)nh~+3(1 +op(l)),

var(SjIX) = nh;j+lvj(x)(1 +0(1)),

where dj(x) = ~ml(x)f(x)fl"(y - ao)g(ylx)dyfv2+iJ((v)dv, and Vj(x) = f(x)f[£'(y

aoWg(ylx )dy f v2j J(2( v )dv.

Proof By the definition of Sj with a change of variable, we have
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By Taylor's expansion,

Substitute this into (7.13), and use the fact (from the definition of ml) that

we obtain

18

Ji'(y - ao - bohnv)g(ylx + hnv)dy

Ji'(y - mAx + hnv) + ~ml(x)h~v2(1 + o(1)))g(ylx + hnv)dy

J[i'(Y - ml(x + hnv)) + ~ml(x)h~v2(1 + O(I))l"(~n)] g(ylx + hnv)dy

= ~ml'(x)h~v2 Jl"(y - ao)g(ylx)dy(1 + 0(1)), (7.14)

where the second equality follows from Taylor's expansion on l'(·), and ~n lies between

y - ml(x + hnv) and y - ml(x + hnv) + tml'(x)h;v2(1 + 0(1)) with

It follows from (7.13) and (7.14) that

ESj = ~nh~+3ml(x)f(x)J£"(y - ao)g(ylx)dyJvj+2]((v)dv(1 + 0(1)). (7.15)

To obtain the conditional result, we proceed as follows. Note that

E [E(SjIX ) - ESj]2 = nvar (a(X1)(Xl _ xo)j]( (X~~ X))

< nEa2(Xt)(Xl _ x)2j ](2 (X~~ X) ,

where a(X1) = E (l'(Yl - ao - bO(Xl - x))IXd. By change of variables, (7.14), together

with nhn -;. 00,

E [E(SjIX ) - ESj]2

< n J(J i'(y - ao - bohnv)g(ylx + hnv)dY) 2 h~jv2jhn](2(V)dv

= 0 (nh~j+5) = 0(n2h;j+6). (7.16)
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Therefore,

19

This together with (7.15) implies the first assertion.

The second assertion follows from a similar argument. More precisely, we proceed as

follows. First of all,

var(SjIX) = :L(Xi - x)2i 1(2 (X~: X) var (£'(¥i - ao - bO(Xi - X)) X )

= :L(Xi - x)2i1(2 (X~: X) E (£,2(¥i - ao - bO(Xi - X))IX ) +Op(nh;i+5)
2"+5_ Zn + Op(nhnJ ), (7.17)

where (7.16) was used in the last expression. Thus, we need to compute the first factor in

the expression (7.17). Note that by the conditional Jensen's inequality,

EI(XI - x)'; [(, (X~~ X) E(l"(YI _ 00 _ bO(XI _ xnlx )1

1
+

51
'

< E 1£'(Y1 - ao - bO(Xl - x))(Xl _x)i 1( (X~~ X) 1

2
+0

h~2+6)i+l JJI£'(y - ao - bOhn v)\2+Og(ylx +hnv)dyv(2+o)i 1(2+6(v)f(x + hnv)dv

h~2+6)i+l f(x) JIl'(y - ao)\2+O g(ylx)dy Jv(2+O)j J(2+O)(v)dv(1 +0(1)), (7.18)

It follows from the Chebychev inequality and (7.18) that

From the last display and (7.17), we obtain the second assertion. 0

Lemma 5 Under Conditions 1, 4 and 5,

j = 0,1.

Proof It is sufficient to verify the 'conditional' Lyapounov's condition:
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for some 0 > O. This follows from the second assertion of Lemma 4 and the following:

E Il'(}i - ao - bO(Xi - x ))(Xi - x)j J( ("Y"i
h
: X) 12+c5

= h~2+8)j+l JJIf'(y - ao - bohnv)1 2+c5g(Ylx + hnv)dyv(2+c5)j J(2+c5(v)f(x + hnv)dv

h~2+8)j+lf(x)JIl'(y - ao)\2+c5 g(ylx)dy Jv(2+c5)jJ((2+c5) (v)dv(l + 0(1)),

which implies that

20

7.1 Proof of Theorem 1

By Lemmas 4 and 5,

and this together with Lemma 2 yields

According to Lemma 3,

The conclusion follows. 0

7.2 Proof of Theorem 2 and Corollary 1

Theorem 2 follows directly from Theorem 1. To verify Corollary 1, set

(72( x) = f[£/(y - ao)]2g(ylx )dy2'

(J £"(y - ao)g(ylx )dY)
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Then the integrated mean squared error is given by

/ (,8~(x) + r 2(x))w(x)dx

h
4
(/ ) 2/ J J(2(v)dv / (72(X)= ~ J(2(v)dv [m"(x)]2w(x)dx + --w(x)dx.

4 nhn f(x)

Hence the optimal bandwidth is

( )

1/5

J 2 J U2 (X)
-1/5 J( (v)dv 1(x) w(x)dx

hopt = n 2

(Jv2J((v)dv) J[m"(x)]2w(x)dx

7.3 Proof of Theorem 3

According to the definition of lE(.),

-q, if x ~ -f,

l~(x) =
-ql'( -x), if -f ~ x ~ 0,

pl'(x ), if°~ x ~ f,

p, if f ~ x,

and

0, if x ~ -f,

l~(x) =
ql"( -x), if -f ~ x ~ 0,

pl"(x), if 0 ~ x ~ f,

0, if f ~ x.

21

The asymptotic normality follows from Theorem 1. The second statement follows from

i:['~(y - aoWg(ylx)dy = i: q2g(y+ aolx)dy

+ iE)l~(y)]2g(y + aolx)dy +100

p2g(y +aolx)dy

= q2P(Y ~ ao - fix) + O(f) +p2[1_ P{Y ~ ao +flx)]'-" pq,

and

1: £~'(y - ao)g(Ylx )dy = i: ql"(-y)g(y +ao/x )dy + foE pl"(y)g(y + aO/x )dy
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= fa~ l"(y ){qg( -y +aolx) +pg(y + aolx )}dy

= g(aolx) fo~ l"(y)dy(l +0(1))

= g(aolx)(l +0(1)) -+ g(aolx).

This completes the proof of Theorem 3. 0

7.4 Proof of Theorem 4

Note that Huber's 1/J function

l'(y) = 1/J(y) = max{ -c, min{y, c}}, c > 0,

is approximated by:

22

-c, if y ~ -c,

£~(y) = y, if Iyl ~ c - f,

c,

Note that

0,

if c ~ x.

if Iyl ~ -c,

,~ ( -3(y + c)2 +4f(Y +c)), if -c ~ y ~ -c + f,
£~(y) =

1, if Iyl ~ c - f,

,\ (-3(Y - c? - 4E(y - c)), if c - E~ Y ~ c.

The asymptotic normality follows from Theorem 1. For the second statement of the

theorem, note that

foOO[£~(y - aoWg(ylx)dy = foc-~ +1:~ +100
[£~(y)]2g(y + aolx)dy

= fac-~ y2g(y +aolx)dy +0(1) + c2P(Y - ao ~ clx).

Similarly,
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Hence, as E: -+ 0,

1:[i~(Y - ao)]2g(ylx)dy -+ 1:["p(y - aoWg(ylx)dy = var("p(Y - ao)IX = x).

(Since E("p(Y - ao)IX = x) = 0.)

23

10
00

l~(y - ao)g(ylx)dy = r-£ +l
c +100

l~(y)g(y+aolx)dyJo c-£ c

= Ioc

-£ g(y +aolx)dy +1:£ l~(y)g(y +aolx)dy

Ioc
-£ g(y +aolx )dy - 3E:g(c + aolx )(1 +0(1 )).

Hence, .1: l~(y - ao)g(ylx)dy -+ E("p'(Y - ao)IX = x).

Therefore,

This completes the proof of Theorem 4. 0
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