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Abstract

Hurricanes and tropical storms occur in the North Atlantic Ocean and the Gulf of Mexico

throughout the year. They are most prevalent in September and almost nonexistent from January

through April. The objective of this paper is to quantify their annual arrival cycle in a meaningful

mathematical form suitable for engineering computations.

A Poisson process with a time-varying intensity function is used to model the intraseasonal

variations in storm arrivals. A concrete definition of the model is presented, interpreted, and

consequences of the model are examined. The kernel method is introduced as an effective method of

estimating the time-varying intensity function. This model is applied in the analysis of a data set

containing all recorded hurricanes and tropical storms occurring in the North Atlantic Ocean and the

Gulf of Mexico during the years 1871-1990 inclusive.

The methods yield a graph of the estimated intensity function. From this graph, we are able

to infer: (1) the peak of hurricane season is around September 12; (2) an early season flare up of

activity exists around June 19; and (3) a possible "Indian summer" flare up of activity exists around

October 12. More importantly, the methods yield an estimate of the distribution for the number of

storms occurring over any time period.



1. Inbodudion

The official hurricane season in the North Atlantic Ocean and the Gulf of Mexico runs from

June 1 through November 30. Unfortunately, hurricanes and tropical storms frequently occur outside

of the official season. Tropical events have been recorded in every month of the year except April since

records were kept in 1871 (Neumann et al. 1981). However, the frequency at which these tropical

events occur varies greatly over the course of the year: tropical events occur much more frequently

during September than they do in June.

The objective of this paper is to quantify these intraseasonal variations in a mathematical

manner. A probabilistic model is developed and applied to a data set that contains all recorded

tropical storms and hurricanes occurring in the North Atlantic Ocean and the Gulf of Mexico during

the 120 year time period 1871-1990. Inferences about hurricane season are made from the results.

2. Methods

The time when tropical events occur can not be predicted exactly in advance. In order to

model this type of phenomenon, a probabilistic model that allows events to occur randomly on the

time axis is employed: the Poisson process.

a. The Poisson Process with Constant Intensity

A constant intensity Poisson process with intensity parameter A> 0 is defined as follows.

Events occur on the time axis according to the rules: if (t, t +h) is a small time interval, then

(A) P[ Exactly one event occurs in (t,t +h) ] = Ah +0l(h);

(B) P[ No events occur in (t,t +h) ] = 1- Ah +02(h);

(C) P[ More than one event occurs in (t, t + h) ] = 03(h);

(0) The number of events occurring in disjoint sets of time are independent;
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where P[ ] denotes the probability of the event in brackets and 0i(h) denotes an order function

satisfying h -lOi(h) ~ 0 as h ! 0 for i = 1, 2, 3. The 0i(h) sum to zero for any h and are interpreted as

functions that take on small values for h close to zero. It is conventional to drop the subscripts from

the order functions; this convention will be followed.

These properties indicate that either no events occur or one event occurs in (t, t +h) with high

probability. They also imply that any interval of length h is equally likely to see one event occur, thus

the term constant intensity. Notice that the larger .\ is, the more likely it is that an event will occur in

(t,t + h). The Poisson process is directly related to the Poisson distribution: let N(a,6) denote the

total number of events occurring in the interval (a, 6). Then

-.\(b - a)[ ( )]k
P[N(a,6)=k]=e k~6-a, k=O,I,2, ...

Thus, N(a, 6) has a Poisson distribution with parameter .\(6 - a).

6. The Poisaon Proceaa with Time- Varying Intenaity

(1)

The constant intensity Poisson process has many convenient properties; however, it will not

model the storm arrival data set accurately. This is because the constant intensity assumption is false;

it is much more likely that a storm will occur in September than in January. One easy approach in

bypassing this problem is to let the parameter .\ depend on time: .\(t). A Poisson process with time-

varying intensity function .\(t) may be defined via:

(A) P[ Exactly one event occurs in (t,t + h) ] = .\(t)h + o(h);

(B) P[ No events occur in (t,t +h) ] = 1- .\(t)h + o(h);

(C) P[ More than one event occurs in (t, t + h) ] = o(h);

(D) The number of events occurring in disjoint sets of time are independent;
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where (t,t + h) is a small interval of time and o(h) is defined as before. We will make the assumption

that ~(t) is a continuous, bounded function of t. The above properties provide a convenient

interpretation for the intensity function: the probability an event occurs in the small time interval

(t, t +h) is approximately ~(t)h. Again, let N(a,b) denote the number of events occurring in (a,b). As

before, N(a,b) follows the Poisson distribution:

-A(a,b) ( )k
P(N(a,b)=k] = e klAa,b, k=O,I,2, ... where A(a,b) = f: ~(u) du, (2)

and it is termed that N(t) = N(O, t) is a Poisson process with time-varying intensity function ~(t).

The Poisson process with time-varying intensity function was suggested as a model for

monsoons in the Bay of Bengal by Thompson and Guttorp (1986). Solow (1989a) used a monthly

discrete version of the time-varying Poisson process in analyzing storm data from the mid-Atlantic

coast for the years 1942-83.

Now suppose that random events occur on the time axis according to a Poisson process with

time-varying intensity function ~(t), but that some of the events are not counted. Assume that each

event is counted with probability p and that the counting decisions are made independently at all

points of occurrence. It is easy to show that the number of counted events is also a Poisson process

with time-varying intensity function pACt). This "thinned" Poisson process will arise later as a model

for tropical events that occurred but went unrecorded. Solow (1989b) previously suggested this

methodology for missing storm data.

c. Estimation of the Intensity Function

An estimate of ~(t) from an observed sequence of event occurrence times must be developed.

The method to be employed is called the kernel method and has been used to model lake freeze-over

times by Solow (1991). The kernel method traces its roots to the nonparametric estimation of
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probability density functions (Rosenblatt 1956).

Suppose n tropical events occurred at the ordered times zl' z2' ... ,zn' Let X(t) denote the

estimate of ..\(t). Then X(t) should be large for values of t where many events occur close by, and small

for values of t where few events occur close by. One way of constructing such an estimate is to put a

symmetric probability density function, denote it K(z), over each observation. K(z) is called the

kernel function and X(t) is defined as the sum of each "kernel density" evaluated at t:

n
X(t) = L K(t - zi)'

i=l
(3)

Fig. 1 demonstrates the idea. The occurrence time of each event is marked with an X on the time

scale. The dashed curve is the sum of all individual kernels and is the intensity estimate. The kernel

function chosen for the graph was the standard normal density function

(4)

In general, assume that K(z) is a mean zero symmetric probability density function with a

finite second moment. For added flexibility, a "spreading factor" h that controls the spread or

variance of the kernel function K(z) will be introduced. This is parametrized as follows: for h > 0, let

Kh(z) = h -lK(z/h). Then Kh(z) is also a mean zero symmetric probability density function. The

parameter h is called the bandwidth and has the following interpretation. If h is large, the variance of

the kernel function Kh(z) is large; if h is small, Kh(z) has a small variance. Fig. 2 graphs two normal

kemel functions, one with h = 1, the other with h = 5.

The equation for X(t) with kemel function Kh(z) is

(5)
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Statistical properties of A(t) can be found in Brooks (1991), Diggle (1985), and Diggle and Marron

(1988). Solow (1991) discusses confidence functions for ~(t); the interested reader ·is referred there for

more details.

In applications, the kernel function K(z) and the bandwidth h must be selected. Many

methods have been proposed in tackling this problem. Brooks (1991), Diggle and Marron (1988), and

Solow (1991) have suggested choosing h by a procedure known as cross-validation; alternate methods

are suggested in Silverman (1978). No method proposed to date seems to work well in all cases;

however, there is wide agreement that the selection of h is much more critical than the choice of K(z)

(Silverman 1986; Solow 1991). Because of its many convenient statistical properties, the standard

normal density function will be used for K(z) in all work that follows. This choice gives

-00 < z < 00. (6)

If the selected bandwidth is too small, the intensity estimate will be a jagged curve

(undersmoothed); if the selected bandwidth is too large, the intensity estimate may smooth away

modes and other true features in the data (oversmoothed). This dilemma, commonly referred to as a

smoothing problem, is analogous to selecting the best cell width when constructing a histogram from

data. Perhaps the most common method of selecting h is the "eyeball method": plot the intensity

estimate for different h and choose an h that gives a reasonable graph - not too smooth and not too

jagged. Since bandwidth selection is not a major theme of this paper, the "eyeball method" is used in

what follows.

3. Results

a. The Data

The data set to be analyzed consists of 955 recorded tropical storms and hurricanes occurring
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in the North Atlantic Ocean and the Gulf of Mexico during the years 1871-1990 inclusive. Data for the

years 1871-1980 can be found in Neumann et ale (1981). The data for the years 1981-1990 can be

found in the annual tropical summaries published in Monthly Weather Review. Storms achieving a

maximal status of tropical depression have been excluded from the analysis.

There is evidence to suggest that a few tropical storms and hurricanes went undetected during

the early years of this data set. A plot of the number of storms occurring in each year over the

duration of the data set is provided in Fig. 3. The plot shows that the average number of storms per

year is relatively stationary over the separate time periods 1871-1930 and 1931-1990; however, the

average number of yearly storms are 6.450 and 9.483 respectively for these two periods. This is a

marked increase. Dotted lines are drawn in Fig. 3 to enhance visual clarity of this "changepoint".

Neumann et ale (1981) conjectured that this anomaly is due to improvements in sensing techniques,

such as the emergence of aircraft, and is not due to any type of natural phenomenon. On the surface,

this explanation seems quite plausible.

The data for the period 1871-1930 will be modelled with a thinned Poisson process;

consequently, we assume that any tropical event that occurred during the years 1871-1930 was detected

and recorded with probability p. Most tropical events occurring during the years 1931-1990 were

probably detected and this data is modelled with an unthinned Poisson process. From the averages

given in the last paragraph, one can estimate the value of p with p= 6.450/9.483 ~ .680.

It is natural to assume that the unthinned intensity function '\(t) is periodic with a period of

365 days. Under this assumption, one would like to combine all 120 years of data into one large data

set and compute an intensity estimate on the interval [0,365]. Conversion to a yearly intensity

estimate is obtained by dividing the combined data set intensity estimate by 120. However, one must

be careful to account for the thinned observations during the years 1871-1930. Since the intensity

function during a thinned year is pA(t), each observation during a thinned year should be weighted by

p -1 to cancel this bias. Using p to estimate p and combining this with (5), the yearly intensity
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estimate takes the form

- 1 ~ (t-z.\
>t.(t) = N1i ~ 1;K -r-J'

•=1
0$t$365. (7)

Here, N denotes the number of years of data (120 for our data) and 1; is the weighing factor defined

by 1; = P-1 if storm i occurred during the years 1871-1930 and 1; = 1 if storm i occurred during

1931-1990. One sees that more complicated thinning assumptions will only change the weighing

factors. Solow (1989b) explored a weighing scheme for Australian tropical cyclones that uses the

incomplete beta ratio.

The arrival date for each tropical event is assigned to be the average of the event's birthdate

and deathdate. For example, a hurricane occurring from September 1 through September 5 yields a

point at September 3. Recall that the normal kernel function Kh(z) as defined in (6) is being used.

b. The Intensity Estimates

Fig. 4 shows the yearly intensity estimate of our data set with a bandwidth of h = 2.5. This

curve is too jagged. Fig. 5 shows the yearly intensity estimate with the bandwidth h =15.0 - this is

too smooth. After a few more plots were made with varying bandwidths, the bandwidth h = 5.0 was

selected as being reasonable. The intensity estimate for this bandwidth is plotted in Fig. 6. The

bandwidth selected by cross-validation was around h = 16.5 - much too large. For other examples of

data sets oversmoothed by the cross-validation bandwidth, see Brooks (1991).

c. Remarks

Fig. 6 shows that the peak of hurricane season is around day 255 (September 12). Fig. 6 also

shows a definite early season flare up of activity around day 170 (June 19) followed by a calmer period

until about day 195 (July 14). An examination of Figures 4 and 6 indicate a smaller possible increase

7



of activity around day 285 (October 12). Whether or not this "Indian summer effect" is actually there

is debatable.

In this data set, only a few storms occurred near the yearly boundaries at day 0 and day 365.

Problems can arise when a significant number of events occur close to a boundary. An example of this

problem and a solution is presented in Diggle and Marron (1988).

Many times, the researcher is interested in a subset of the data only - e.g., all class 4 and above

hurricanes or all Cape Verde tropical events. The preceding analysis could be repeated after all

unimportant observations are deleted from the original data set.

4. Conaequenc:es of the Model

II. The Number 0/ Storms Occurring in II Time Period

If it is assumed that the arrival times of tropical events are statistically governed by a Poisson

process with 'the time-varying intensity function A(t), then the distribution for the random number of

tropical events, denote it by X, occurring in any set S S; [0,365] is explicitly given:

-Q k
P[ X = k ] = e k! k = 0, 1, 2, .•. where Q =JS A(u) duo (8)

Equation (8) says that X has a Poisson distribution with parameter Q. An estimate of Q, call it ii, can

be obtained by numerically integrating X(t) in Fig. 6 over the set S. A simple expression can be

derived for ii without numerical integration when the normal kernel function is used as defined in (6)

and the set S is an interval of the form (a, b):

8
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Bere, ~(z) is the cumulative distribution function of the standard normal random variable and is easily

evaluated by many computer software packages. The denominator of N in (9) indicates the use of a

yearly intensity function.

Table 1 applies this idea by computing Ci for each month of the year. The value h = 5.0 was

chosen to be compatible with Fig. 6. Also included in Table 1 is the estimated probability that no

tropical events occur in each month of the year, e - Ci.

By choosing S =[0,365], an estimate for the distribution of the number of tropical events

occurring per year is obtained:

Ci=

t 1i ( ~365hZi)_4{~) )

N (10)

The approximation in (10) is based on the fact that only a few storms occurred close to the boundaries

at day 0 and 365, and on the property that the standard normal random variable contains most of its

probability mass close to the origin. For our data set, the exact value of Ci is 9.472; the approximated

value of Ci is 9.475. Thom (1960) discusses the Poisson distribution and the negative binomial

distribution as models for the number of tropical events occurring in a year.

b. Nonencounter Probabilities

One desirable feature of the Poisson process model is that it can be used to compute

nonencounter probabilities. Suppose that tropical events occur on the time axis according to a Poisson

process with time-varying intensity function ~(t). Further suppose that the maximum windspeed of

each tropical event is recorded. Label the windspeed of the ith storm Wi' and assume that the

sequence {Wi} is independent and identically distributed and that Wi is independent of the number of

tropical events occurring. Let the cumulative distribution function of Wi be given by Fw(w) =

P[ Wi ~ w ] and define W maz(t) to be the maximum windspeed observed up to time t (note that we
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need not restrict ourselves to t $ 365 here). The distribution of W maz(t) is sought and the law of total

probability provides

00

P[ W maz(t) $ w] = ~ P[ W maz(t) $ wi N(t) = n] P[ N(t) = n].
n=O

(11)

The conditional probability term in the sum is Fw(w)n by the independence assumptions, and

(2) evaluates the term P[ N(t) = n]. Putting these together and using A(t) to denote A(O, t) provides

(12)

by the Taylor expansion for eZ
• The practical application of (12) requires the estimation of both A(t)

and Fw(w).

One can obtain an estimate of A(t) by integrating X(u) over the interval (O,t):

A(t) = J: X(u) duo (13)

The distribution function Fw(w) is typically estimated with the classical methods of extreme value

theory (Isaacson and MacKenzie 1981; Borgman and Resio 1977). An alternative scheme of estimating

Fw(w) is the points-over-threshold model discussed in Smith (1989).

5. Conclusions

We have seen that a Poisson process with a time-varying intensity function effectively models

the intraseasonal variability in the arrival times of tropical events. One consequence of the Poisson

process model is that the distribution of the number of storms occurring in any time period has a

Poisson distribution; nonencounter probabilities also take on a very simple form.
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The kernel method can be used to obtain an estimate of the time-varying intensity function.

From the intensity estimate, one can easily estimate nonencounter probabilities and the Poisson

parameter for the distribution of the number of storms occurring over any time period.
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Table 1: Monthly P080n Parameters

Month Ci Estimated Monthly Nonencounter Probability

Jan 0.00772 .99231

Feb 0.00675 .99327

Mar 0.01126 .98880

Apr 0.00136 .99865

May 0.11110 .89485

Jun 0.56243 .56982

Jul 0.62360 .53601

Aug 1.95550 .14149

Sep 3.42702 .03248

Oct 2.20679 .11005

Nov 0.48733 .61427

Dec 0.07093 .93153



Fig. 1 : The Kernel Method Idea
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Fig. 2: Comparison of Two Normal Kernels
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Fig. 3: The Observed Number of Annual Tropical Events
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Fig. 4: Yearly Intensity Estimate with h=2.5
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h= 15.0

Fig. 5: Yearly Intensity Estimate with h= 15.0
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h=5.0

Fig. 6: Yearly Intensity Estimate with h=5.0
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