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ABSTRACT. We develop mathematical models for functions with aberrant, high-frequency
episodes, and describe the ability of wavelet-based estimators to capture those features. Our
results have a genuinely local character, in that they describe pointwise asymptotic properties
of curve estimators. Previous accounts of the performance of wavelet methods have been based
on global rates of convergence uniformly over very large function classes; in marked contrast,
we establish local convergence rates for single function. We allow those functions to depend
on sample size, so that we may describe the extent to which sample size influences the type of
short, sharp aberrations that may be accurately recovered from noisy observations. It is shown
that wavelet methods based on thresholding, and employing a relatively arbitrary level of pri­
mary resolution, capture high-frequency episodes with an accuracy that is within a logarithmic
factor of being optimal. We point out that this factor derives from the estimators being some­
what oversmoothed, with systematic errors of larger order than their stochastic errors. That
undersmoothing is, in turn, a consequence of inadequate choice of primary resolution. In prin­
ciple, this difficulty may be overcome by adjusting the primary resolution level in an adaptive
way, but that is not a practically appealing proposition, not least because of its computational
complexity. By way of contrast, methods based on more traditional smoothing approaches can
be applied locally to obtain estimators that outperform wavelet methods in terms of pointwise
convergence rates. In particular, we show that estimators based on local linear smoothing at­
tain the optimal convergence rates, even in the presence of unusually high frequencies in the
curve. Moreover, these local smoothing methods are straightforward, in both conception and
execution.
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1 Introduction

Wavelet transforms are a device for representing functions I(x) in a way that is local in both

the argument x and the roughness of I. Consequently, when wavelet methods are applied to

produce statistical estimates of a function from noisy data, they provide levels of smoothing

which automatically adapt to local variations in the roughness of I as x changes. This local

adaptability has traditionally been expressed in terms of the global performance of wavelet

curve estimates over very large function classes. In particular, such an approach is taken in

the seminal work of Donoho (1992), Donoho and Johnstone (1992a,b), Donoho, Johnstone,

Kerkyacharian and Picard (1993) and Kerkyacharian and Picard (1993a,b), who introduced

wavelet methods to statistics. In the present paper we develop theory that explicitly describes

the performance of wavelet methods in a local setting. In particular, we develop upper bounds

to pointwise rates of convergence. These upper bounds enable us to show explicitly how wavelet

estimators react to local episodes in a curve, and how they adapt to them in a nearly-optimal

way. Our distinctly local approach to mathematical modeling differs markedly from the global

viewpoint adopted by earlier authors, who have relied on uniform global convergence rates to

convey information about the issues that we are addressing here.

From the viewpoint of mathematical modeling we define irregular episodes as varying fre­

quencies of the target function I. The frequencies may be very large, and may be quite different

at different points. We demonstrate that, up to a logarithmic factor, wavelet methods manage

to adjust optimally to varying frequencies by changing the level of resolution. Our results are

quite different from those of other authors, primarily because the target functions in our esti­

mation problems do not come from traditional function classes (e.g. Besov spaces). Instead,

the smoothness of the functions is allowed to vary with sample size, reflecting the fact that with

larger sample sizes one might hope to be able to capture more erratic episodes in a curve.

In the remainder of this section we summarise our main results and discuss their relationship

to more traditional descriptions of curve estimation. Adapting ideas from Hall and Patil (1993a)

we take the target function to have the form

N

I(x) = lo(x) +L /j{Wj(x - Xj)},
j=l
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where Xl,"', XN are distinct fixed points, the functions Ij are fixed, but the frequencies Wj 2: 1

may depend on sample size n. The fact that Wj may vary with n, and may diverge to infinity

as n increases, is critical to our analysis. It allows the irregularity of the episode in f at Xj to

depend on sample size, and in fact the smoothness of f is governed by the sizes of WI, ... ,WN.

(There are no serious technical problems in allowing N and the X j 's to vary with sample size, but

doing so would significantly complicate our discussion.) Within the context of fixed x/s, and

assuming that the functions fa and Ij have r bounded derivatives, we shall show that an r'th

order wavelet estimator of f achieves the mean square convergence rate (wjn-!Iog n)2r/(2r+l)

simultaneously at each respective point Xj; and that the mean square convergence rate at

points between the xi's is O{(n-!Iogn)2r/(2r+I)}. These properties identify, and indeed are

characteristic of, the spatial adaptation features of wavelet shrinkage. The rates are obtainable

using estimators with primary resolution of order {n(log n?rp/(2r+I) or smaller (including the

case where primary resolution is fixed, not depending on n). They should be compared with

the rate O{(wjn- l )2r/(2r+I)}, which is optimal in this setting. Thus, wavelet methods achieve

optimal local convergence rates within a logarithmic factor.

The logarithmic factor that appears in our rates arises from the form of the threshold,

which is generally b = const.(n-Ilog n )1/2. Only those estimated wavelet coefficients that are

larger than b are included in the empirical wavelet transform. If the logarithmic factor could

be removed from b then the logarithm would also vanish from the convergence rates above.

However, removing the logn from b would dramatically alter the convergence properties of

the infinite series that defines the wavelet estimator - see for example Hall and Patil (1993b),

where the issue of smallest possible b is addressed in detail. Thus, the desired improvement in

accuracy is not achievable by simply adjusting the threshold.

As indicated two paragraphs above, a wavelet estimator achieves the convergence rate

(wjn-I logn)2r/(2r+I) at Xj by fixing a global level of primary resolution, p, say, and using

thresholding to capture local features, appealing to the multiresolution property of the wavelet

transform. The operation of thresholding influences only the bias of the estimator, to first

order, and does not appreciably affect the variance. As such, it does not produce statistical

smoothing in the usual sense. In particular, it does not achieve the usual trade-off between
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bias and variance (to first order) that is usually the hallmark of statistical smoothing. For this

reason the estimator is often used in an oversmoothed form, its variance contribution to mean

squared error, of order n-1p, usually being of smaller order than its bias contribution.

This fact provides further insight into why the estimator does not achieve optimality - the

estimator oversmooths, with consequent loss of performance. Performance may be improved,

and the logarithm removed from the convergence rate, by utilizing appropriate smoothing as

well as thresholding. If p = Pj is chosen so that n-1p and (Wjp-l?r (representing variance

and squared bias, respectively) are of the same size, then the overall convergence rate of mean

squared error of the estimator of f( x j) is (wjn- 1)2r/(2r+l). As a result, the logarithmic factor has

been removed from the convergence rate, which has been correspondingly improved. However,

this enhancement has been achieved at the expense of altering the primary threshold at each

point x j where the function f has a significantly different frequency. Such an approach is

computationally awkward, and requires an empirical device for choosing the primary resolution

adaptively according to location. For many purposes the logarithmic factor is a small price to

pay for computational expediency. In contrast, however, we shall show that adaptive local linear

smoothing methods compete favourably with wavelet methods, in terms of both accuracy and

ease of application. Indeed, we shall demonstrate in Section 4 that adaptive linear estimation

methods, such as those investigated by Fan and Gijbels (1993), are able to attain optimal

pointwise convergence rates even in the presence of unusually high frequencies in the curve.

In this critical sense adaptive local linear smoothing methods outperform globally thresholded

wavelet methods.

The case of nonparametric density estimation, where f is a probability density, is the sim­

plest to discuss. Hence we begin by treating that setting, in Section 2. The case of regression

is addressed in Section 3, and that of adaptive linear smoothing in Section 4. All proofs are

deferred to Section 5.

Work of Hall and Patil (1993a) is closely related to our own in that functions with increas­

ingly high-frequency episodes .are treated there. However, those authors address only global

convergence rates, and assume that high-frequency episodes in the curve are present over rel­

atively large intervals. In contrast, the oscillations represented by the term Ij{Wj(x - Xj)} in
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(1.1) vanish very quickly, outside an interval of width O(w,t), and so are inherently more diffi­

cult to detect. Fan, Hall, Martin and Patil (1993) examine the performance of wavelet methods

in the context of more subtle local features of a very smooth, fixed curve, not depending on

sample size.

2 Density estimators based on wavelet shrinkage

2.1 Wavelet transforms. We summarize here the basic theory of wavelet transforms. In the

next subsection we put it into an empirical framework for estimating density functions. Our

main theoretical results are presented in subsection 2.3.

The key ingredients of our analysis are discussed in much more detail by Strang (1989, 1993),

Meyer (1990) and Daubechies (1992). We first review some key features of the multiresolution

analysis of Meyer (1990). See also Section 5.1 of Daubechies (1992). Suppose there exists a

"scale function" or "father wavelet" </> such that

1. Vk C Vk+ll where Vk denotes the space spanned by {2k/ 2</>(2kx - f), f E~};

2. the sequence {2 k / 2</>(2k x -l),l E~} is an orthonormal family in L2 (JR).

A necessary condition of the above requirements is that </> satisfy the so-called scaling equation,

</>(x) =L cl</>(2x -l),
l

where the constants Cl have the property

(2.1)

L ClCl-2m = 200m, (2.2)
l

and Oij is the Kronecker delta. Conditions (2.1) and (2.2) correspond respectively to require-

ments 1 & 2; see Strang (1989). Then nkE~ Vk = {O}, and if, in addition, </> E L 2(JR) and

f </> = 1, L 2 (JR) = UkE~ Vk. The scale of Vk becomes increasingly fine as k increases.

The scaling coefficients {Cj} uniquely determine the function </> under appropriate regularity

conditions. Further, if {cd has bounded support, so does </>.

The most commonly-used wavelet functions are those having bounded support with r - 1

vanishing moments, for some r 2: 1:

Jxj</>(x)dx = OO,j for j = 0"", r - 1 and JIxT </>(x)ldx < 00.

5

(2.3)



See Daubechies (1992) for constructions of this family. Translated to the scaling parameters Ce,

conditions (2.3) entail L: Ce = 2, L:e( -lteice = 0 (0 < j ~ r - 1), L:f2rc; < 00; see Strang

(1989).

Under these assumptions there exists a function 1/J (the "mother" wavelet) given by

1/J(x) = L(-llcl-e<!>(2x - f),
e

such that

1. {2k/21/J(2kx - f), f EZZ} is an orthonormal basis of Wk, where Wk is the space such that

VkH = Vk Ell Wk;

2. {2k/ 21/J(2kx - f),f EZZ, k EZZ} is an orthonormal basis of L2(Dl);

3. the zero'th and first r - 1 moments of 1/J vanish:

Jxi 1/J(x)dx = 0 for j =0"", r - 1 and JIxr 1/J(x)ldx < 00. (2.4)

In practice, 4> and 1/J are typically compactly supported, and so we impose that condition

here. The sequence {4>(x - f), 2k/21/J(2kx - f), fE ZZ ,k 2: O} is a complete orthonormal basis

of L 2(Dl).

Let p > 0 denote the level of prmary resolution, and define Pk = p2k • Put

for an integer f E ZZ. Then, as noted in the previous paragraph, the bases {4>e( x), 1/Jke(x), f E

ZZ, k EZZ +} are completely orthonormal for L2(Dl): for any IE L2(Dl),

00

I(x) = Lbe4>e(x) + L Lbkl1/Jke(x),
e k=O e

with wavelet coefficients

(2.5)

be = Jl(x)4>e(x)dx, (2.6)

2.2 Empirical wavelet transforms for density estimation. The orthonormal bases dis­

cussed above can easily be applied to statistical function estimation. The most convenient
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setting is perhaps density estimation. Let XI,···, Xn be a random sample from a distribution

with density f. Formulae (2.6) suggests unbiased estimates of the wavelet coefficients:

(2.7)

For high resolution (i.e. large Pk), the estimate bkl will basically be noise, since 'l/Jkl is supported

only in a small neighborhood around fjPk and hence very few data points are used to calcu­

late bkl . (Indeed, if 'l/J is compactly supported then 'l/Jkl vanishes outside an interval of width

O(pk'l ).) Following Donoho and Johnstone (1992a), we select useful estimated coefficients bkl

by "thresholding". Considerations of this nature suggest the estimator

00

j(x) = L bl<Pl(X) + L L bklI{lbkll 2: 8}'l/Jkl(x);
l k=O l

(2.8)

compare (2.5). Asymptotic theory developed by Donoho, Johnstone, Kerkyacharian and Picard

(1993), and Hall and Patil (1993a), suggests taking 8 = c(n-I logn)I/2, where c > 0 is a

constant. Following Donoho and Johnstone (1992a), the above estimator corresponds to "hard

thresholding". "Soft thresholding" involves replacing bkl1{lbktl~6} in (2.8) by sgn(bkl)(lbkll-8)+,

leading to the estimator

00

js(x) = Lbl<!>l(x) + L Lsgn(bk£)(Ibkl l- 8)+'l/Jk£(x).
l k=O l

(2.9)

The intuition behind either type of thresholding is based on the 'signal-to-noise' ratio. When

this ratio is larger than a certain threshold, the (k,f)'th term is included in the sum; otherwise,

the (k,f)'th term is omitted from the sum.

2.3 Asymptotic theory for wavelet density estimators. We begin by addressing the

case of densities of the form (1.1). To ensure that f is a density for all sufficiently large choices

of the Wj'S we ask that fo be a fixed, r-times differentiable density bounded away from zero on

an interval I = (-B, B); that the points Xl < ... < XN all lie within I; that the support of Ij

is contained within an interval Ij = (-Bj,Bj); that Ij have r bounded derivatives on Ij with

f Ij = 0; and that inf(_B,B) fo > - minj infIj Ij. Then there exist constants Bo and w* 2: 1,

depending on N and Xl, ... , XN, such that for all WI, ".,WN 2: w*, f is bounded above by Bo on

I and is a proper density function.
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To picture the I's that the model (1.1) generates, consider, for example, the class of Normal

mixtures. Densities in that class range from very smooth curves to very rough curves - see for

example Marron and Wand (1992). The "Doppler" example treated by Donoho and Johnstone

(1992a) is also of this type.

Our first result treats the mean squared error of density estimators under model (1.1).

We assume throughout that </> and 'I/J are bounded and compactly supported, satisfy (2.3) and

(2.4), and are such that the functions h, 'l/Jkl' -00 < l < 00, k 2:: 0 form a complete orthonormal

family.

Theorem 2.1. Take b = c(lIflloon-l logn)I/2, where the constant c 2:: y'6. Let 0 <

c < 1, and 1]1 ~ 1]2 denote positive numbers converging to zero as n -+ 00 and such that

1]11(n-l+~logn)2r/(2r+l)is bounded. Letwo andC be fixed positive numbers, and assume that

maxo<j<NWj = O(n~). Let Xo be any real number not in the set (Xl, ... ,XN). Then for

o~ j ~ N,

(2.10)

uniformly in values of p and q satisfying p 2:: C and 1]1 ~ n-1p2Qog n ~ 1]2.

The following heuristic argument in terms of the traditional smoothing notion of balancing

squared bias against variance clarifies the origins of, and the roles played by, the various terms

on the right-hand side of (2.10). The analogue of bandwidth for wavelet-based estimators

is the quantity p-l, where p denotes the level of primary resolution. For kernel estimators

with bandwidth h the variance contribution to mean squared error is of size (nh)-1 = n-1p,

which is the first term on the right-hand side of (2.10). The squared bias contribution for

kernel estimations is of size (hr f(r))2, which at the point x j is of size ( = (p-rwj)2. If p is

of smaller order than (njlogn)I/(2r+l) then the bias term on the right-hand side of (2.10),

(n-110g n )2r/(2r+l), is actually of smaller order than (. The ability of wavelet methods to

achieve this result is a consequence of the multiresolution property of the wavelet transform.

However, despite multiresolution the squared bias contribution for wavelet estimators is still

of larger order than that from the variance, and the density estimator is still oversmoothed.

The optimal amount of smoothing is achieved when p is chosen so that the variance and the

"nonmultiresolution component" of squared bias are of the same size - that is, when n-1p and
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(p-rwj? are of the same size. It is simplest to discuss this context when w is fixed, which is

the case we shall address next.

Our next theorem addresses the case of densities whose r'th derivatives are bounded. Let

F = F(r, B) denote the class of r-times differentiable densities f on the real line, such that

both IIflloo and Ilf(rlll oo ~ B.

Theorem 2.2. Assume conditions (2.1) - (2.4) on the wavelet functions 1/J and <p. Take

8 = 81 = c(lIflloon-l logn)l/2, where the constant c ~ y'6. Let TJl ~ TJ2 denote a positive

number converging to zero as n --+ 00 and such that TJl l (n-l logn)2r/(2r+ll is bounded. Then

sup E{j(x) - f(x)}2 =O{n-lp + (n-l logn)2r/(2r+l l}
-oo<x<ooileF

(2.11)

uniformly in p, q satisfying p ~ C and TJl ~ p2Qn-l logn ~ TJ2, for arbitrary fixed C > o.

The proof of Theorem 2.2 is similar to that of Theorem 2.1 and is omitted.

An immediate consequence of this result is that if g = g(r, Bll B2 ) denotes the class of

densities f for which both IIflloo and IIf(rlll oo ~ B ll and whose support is contained within

(-B2 , B 2 ), then

supJE(j - 1)2 = O{n-lp + (n-llog n)2r/(2r+l l} (2.12)
leg

uniformly in p, q as specified in Theorem 2.2. Generalizations to densities with unbounded

support are also possible.

It is clear from (2.11) and (2.12) that by choosing p to be of order {n(1ogn)2rp/(2r+1),

or smaller (for example, fixed p is adequate), we ensure a mean square convergence rate of

O{(n-l logn)2r/(2r+l l}. This exceeds the optimal convergence rate, n-2r/(2r+l l , by only a

logarithmic factor. (See Stone (1980, 1982) for an account of optimality in this setting.) Hall

and PatH (1993b) show that the rate of convergence in (2.12) may be improved to the optimal

one by taking p to be of size nl /(2r+ll. Uniformity is not established there, but it may be readily

derived. It is also demonstrated by Hall and PatH (1993b) that for fixed f, and for p of size

{n(log n)2rp/(2r+l l or smaller, the bias contribution to the mean integrated squared error of j

dominates the variance contribution, and

(2.13)
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where the constant C(J) does not depend on n, p or q. This last result demonstrates that

the upper bound evinced by (2.12) (and also by (2.11), in an average sense) is best possible­

compare the right-hand sides of (2.12) and (2.13). Likewise, it is straightforward to establish a

lower bound to result (2.10), in which the bound is of size (n-lwj log n )l/(2r +l).

Theorems 2.1 and 2.2 apply without change to the soft thresholded estimator j.

The analogues of (2.11) and (2.12) for r'th order kernel density estimators, with bandwidth

h, are of course

sup E{j(x) - f(x)}2 = O{(nh)-l + h2r }
-oo<x<oo;fE:F

(2.14)

(2.15)

See for example Silverman (1986, Chapter 3). Choosing h to be of size n-l /(2 r +l) we obtain

optimal convergence rates.

Next we establish a similar result for derivative estimation. Assume that the wavelet func-

tions 1/J and 1/J have v 2:: 1 bounded derivatives. In view of (2.8) and (2.9), density derivative

estimation can be defined by

q-l

pllI:bl4>~II)(X)+I:I:bklI{lbkl l2:: 15}Pk1/Ji~)(x),
l k=O l

(2.16)

(2.17)
q-l

Jr)(x) = pllI:bl4>~II)(X)+ I:I:sgn(bklHlbkll- 15}+Pk1/Ji~)(x).
l k=O l

Another method of estimating derivative function is given by Hall and Patil (1993b). Suppose

the wavelet basis is chosen such that

00

f(lI) (x) = pll I: bl4>~II)(x) + I: I: bklPk 1/Ji~) (x),
l k=O l

uniformly in x E [-B, B]. The following Theorem shows that these derivative estimators also

possess spatial adaptation.

Theorem 2.3. Lei 15 = c(lIflloon-l logn)l/2, where the constant c > V6 + 4v. Under

conditions of Theorem 2.1,

uniformly in values of p and q satisfying p 2:: C and TIl ~ n-l p2q log n ~ Tl2.

We omit the proof of Theorem 2.3.
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3 Wavelet shrinkage in nonparametric regression

3.1 Canonical nonparametric regression. As Donoho and Johnstone (1992a,b) have shown,

wavelet shrinkage can be readily applied to regression problems with regularly spaced design.

To appreciate how, suppose we observe data

(3.1)

where Xi = i/n and the £i's are independent and identically distributed with zero mean and

variance a 2 , and the mean regression function is as given in (1.1), with f replaced by m. Then

the wavelet expansion of m and its coefficients, bt's and bkt'S, are given in (2.5) and (2.6).

Estimators of bl and bkl are

(3.2)

and the wavelet shrinkage estimators of m are defined by

00

m(x) L bt4>l(X) + L Lbkl1{lbkil~8}'ljJkl(X),
l k=O l

00

ms(x) = Lbl(h(x) + L Lsgn(bkl)(lbkll- 8)+'ljJkl(X).
l k=O l

(If n is a power of 2, then Mallat's pyramid algorithm can effect the above computation very

rapidly.)

Next we state the analogue of Theorem 2.1 for the above regression setting. The conditions

on <p and 'ljJ are as before. In addition, we assume that <p and 'ljJ are Holder continuous. For

simplicity we assume that £i's are either Normally distributed or bounded.

Theorem 3.1. Take {) = ca(n-1Iogn)1/2, where c > 0 is sufficiently large. Let£,,,,t, "'2,WO, C

and Xo be as Theorem 2.1. If maXo<j<N Wj = O(n"), then for 0 ~ j ~ N,

(3.3)

uniformly in values of p and q satisfying p 2: C and "'1 ~ n-1p2Q log n ~ "'2.
An heuristic argument illustrating from where the various terms on the right-hand side of

(2.10) originate has an analogue in (3.3), which we shall not pursue here.
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Our results on derivative estimation are readily extended to the present regression setting.

We omit details.

3.2. Options in highly inhomogeneous designs. Wavelet shrinkage is more difficult

to apply to nonuniform designs. To appreciate this problem, let (Xl, Y1),' . " (Xn , Yn ) be a

random sample from a bivariate distribution with mean and variance respectively given by

m(x) = E(YIX = x), var(YIX = x) = a2(x).

One approach to estimating m is to use the wavelet expansion to a certain resolution q

q-l

m(x) ~ L be¢e(x) + L L bke7/Jk((x),
e k=O e

then apply the least squares method

to find wavelet coefficients, and finally use "soft" or "hard" thresholding to construct an appro-

priate estimator. We remark that estimators (3.2) in the uniform design case can be thought of

having been obtained in this way. Given the local nature of wavelets, heteroscedasticity is not a

major concern in the above least-squares problem. However, the property of orthogonality got

lost - the vectors {¢e(Xd}i=l and {7/Jke(Xi)}i=l and are no longer nearly orthogonal unless

design is uniform, and thus wavelets do not help much in computation. Besides, difficulties in

choosing the terms in l arise (in particular, those l for which only a portion of data are in the

support of 7/Jkf.), again because of the non-orthogonality.

A second option is to use

m(x) = {J yj(x, y)dy} j j(x) == ml(x)j j(x)

and to use wavelet shrinkage separately to estimate ml(x) and j(x). The estimate of j(x) was

studied in Section 2.3. To see how to estimate ml (x), note that wavelet coefficients for the

function ml (x) are

be = JJ¢e(x)yj(x, y)dxdy bk( = JJ7/Jke(X)yj(x, y)dxdy,
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and may be estimated as in (3.2). Now apply "soft" or "hard" shrinkage to these coefficients,

to obtain an estimate of ml (x). Spatial adaptation results can similarly be obtained, but two

separate estimates of ml (x) and f( x) makes the idea less attractive. In particular, the local

neighborhoods used by ml (x) and m(x) can be very different. The extension to estimating

higher-order derivatives m(l.I)(x) are not very convenient. Note too that var(bkl ) is no longer

nearly constant unless design is uniform and errors are homoscedastic.

A third option involves binning. Partition the x-axis into to N equispaced bins. Let Xj, cj, fj

be respectively the bin center, bin counts and the average of Yi's in that center. Now apply

wavelet shrinkage to the data (x j, fj) as in the canonical regression setup. Owing to the different

number of observations in different bins, fj exhibits heteroscedasticity even if the original data

was homoscedastic. This makes wavelet shrinkage more difficult.

While wavelet shrinkage can in principle be used with the above options, we must admit the

limitations of this application when the design is nonuniform, in particular, not least primary

interest focuses on derivative estimation. In this case, local polynomial regression can easily be

used. With variable smoothing, it readily adapts to spatial inhomogeneity. See Fan and Gijbels

(1993) for a data-driven choice of these bandwidths.

4 Locally adaptive kernel methods

In this section we show how locally adaptive kernel estimators achieve optimal convergence rates

in the context of relatively extreme episodes in a curve, such as those described by model (1.1).

In particular, the convergence rates do not contain an extraneous logarithmic factor, which

as we noted in Section 2 is an inherent consequence of the thresholding method by means of

which wavelet estimators achieve their local adaptability. Our main results are formulated for a

general procedure for bandwidth choice, and are later shown to be applicable to a simple "plug

in" rule.

As in Section 2, the unknown density f is to be estimated from data {Xl,"', X n }. In a

slight abuse of notation we redefine

n

j(x) = ih(x) = (nh)-l LK{(x - Xi)/h},
i=l
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where h denotes bandwidth and J( is the kernel function. We assume that J( is, of bounded

variation, compactly supported and of r'th order - the latter constraint is equivalent to asking

that

Jxj J((x)dx = DO,j, j =0"", r - 1; JxrJ((x)dx =K,lr!,

where K, is nonzero. We shall choose the bandwidth h to depend on location, x, and shall do

that in a data-dependent way. To reflect these dependences we shall write h(x) for h.

Suppose initially that the unknown density f is fixed, not depending on sample size n. Then

the optimal bandwidth h* = h*(x), in the sense of minimising mean square error at the point

x, is asymptotic to

(4.1)

where the constant A = {(f J(2)/(2rK,2)}1/(2r+l) depends only on J(, not on the unknown

density. Here, asymptotic optimality means that both hoih* and the ratio of the respective

mean squared errors converge to 1. See for example Rossenblatt (1971). It may be shown that

a closely related formula remains valid for densities of the type (1.1), which contain erratic

episodes described by high frequencies Wj. For example, if f is given by (1.1) and Ij has r + 1

bounded derivatives then the asymptotically optimal bandwidth for estimating f( xj) is still

ho(xj), provided that wjh*(xj) -+ 0, or equivalently that wjln -+ 0.

Let h(x) denote an empirical approximation to ho(x) (and so to h*(x)), and suppose that

the approximation is sufficiently accurate to ensure that for a sequence of constants bn > 0,

and fixed constants CI , C2 > 0,

(4.2)

and

(4.3)

The next theorem shows that provided the Wj'S do not increase too rapidly, the locally

adaptive kernel estimator A achieves the optimal convergence rates discussed in Section 2 ­

without the log n factors that are needed for thresholded wavelet estimators. As in Theorem 2.1

we take Xo to be any number not equal to one of Xl, ... ,xN, and Wo to be any fixed frequency.
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Theorem 4.1. Let f be given by (1.1), where the functions fo and Ij satisfy the conditions

asserted in subsection 2.3, and maxwj = o{n(1ogn)-3(2r+I)/(2r)}. Assume that K satisfies the

conditions stated above, and that (4.2) and (4.3) hold. Then for 0 ~ j ~ N,

(4.4)

as n -+ 00.

Next we offer a concrete construction of h(x), satisfying the conditions of the theorem.

First we define estimates of f and f(r), and then we plug them into formula (4.1) to obtain an

empirical version of ho.

Let J( x), our estimator of f( x) for the purposes of bandwidth construction, denote a quan­

tity with the property that for constants 0 < CI < C2 < 00,

for x = Xo,"', XN. A great many estimators - for example, kernel estimators - have this

elementary property. For our purposes we may even take J to be a fixed constant. (We are

primarily interested in addressing first-order properties of the adaptive estimator in tracking

high-order frequency episodes of f, and for this purpose the estimators of f and f(r) need only

be of the right order of magnitude with sufficiently high probability.) Let L denote a compactly

supported function satisfying

Juj L(u)du = j!Oj,Tl 0 ~ j ~ r.

In effect, L is a kernel suitable for nonparametric estimation of the r'th derivative of a function.

Put hI = C3n- I/(2r+I) log n, for arbitrary C3 > 0, and

n

j(r)(x) = (nh~+I)-1 LL{(x - Xi)/ht},
i=1

our estimator of f(r). Let h denote the version of ho that is obtained on replacing the pair

(j, f(r)) in (4.1) by (1, j(r)) and let h= min[Cl, max{h, n-I }].

Our final theorem confirms that, provided the frequencies Wj do not increase too rapidly,

the convergence rates claimed at (4.4) hold with this particular version of h.

15



Theorem 4.2. Assume the conditions of Theorem 4.1, and in addition that fci r) and each

,~r) are Holder continuous and that maxwj = 0{n1/(2r +l)(logn)-2}. Then (4.4) holds for

o~ j ~ N.

5 Proofs

Proof of Theorem 2.1. Put ~

it(x) + .6.(x) where

u(llflloon-!togn)t, with 0 < u < c. Write j(x) =

q-1

it(x) I:be4>e(x) + I: I:bklI(lbkll > ~)'ljJkl(X),
e k=O l

q-1

.6.(x) = I: I: bkl { I(lbkel > ~) - I(lbkel > ~) }'ljJke(x).
k=O e

We shall prove that it and .6. converge to f and 0, respectively, at the rate described in Theorem

2.1.

We preface the proof with three useful inequalities. Observe that by Taylor expansion, there

exists a function x' of x such that

Ibkel = :! Ip~1/2 J'IjJ(x)f{(x + i)jpd dxl

= :! Ip;(r+t)J'IjJ(x)xrfcir){(x' + i)jpk}dx

+p;(r+t)~wj J'IjJ( x )xr,y){Wj( iP"k1 - Xj) +WjX'P"k1 } dx
J

< max{llfcir)lloo,I,,~r)lloo, ... ,11'1~Plloo}(r!)-1JIxr'IjJ(x)1 dx

xp;(r+t) [1 + twjI{liP"k1- xjl::; 2A(p"k1+ Wj1)}] .
J=1

Here we used the fact that 'IjJ has bounded support [-A, A]. Note that

(5.1)

(5.2)

By (5.2) and Bernstein's or Bennett's inequality (for example, Pollard 1984, pp. 192-3), for each

y, £ > 0 and for all sufficiently large n,

16



= O~~~l;lP [I ~{'lfkl(Xi) - E'lfkl(X)}I> y(nlOg n)1/2]

< 2exp{-!(1- c)llJll~ly21ogn}~ 2n-(1-e)y2/(2I1flloo). (5.3)

(Here we have used the fact that p2qn-1 logn -+ 0.)

Next, we describe the convergence rate of EA(xj) to f(xj). If 'If vanishes outside [-A,A],

then 'lfkl( x) vanishes unless Ix - fp"k11 ~ AP"k1, and there are at most 2A + 1 values of f with

this property for any given x. Furthermore, by (5.1) there exist constants CI, C2 > 0 such that

if 'lfkl(Xj) =P 0 and Pk ~ C1 then Ibkll ~ C2P~(r+t)wj, while if 'lfkl(Xj) =P 0 and Pk < C1 ,

q-l 00
IEA(xj) - f(xj)1 = L L bklI(lbkll ~ ~)'lfkl(Xj) + L L bkl'lfkl(Xj)

k=O l k=q l

q-l 1

< (2A + 1)11'lf1100 L p~/2 min(C2P~(r+2)wj,~)
k=O

00
+(2A+ 1)C211'1flloowj LP"kr .

k=q

Now,

q-l
'" 1/2 . (C -(r+t) r c) <L....J Pk mm 2Pk Wj, ..
k=O

and
00
L P"kr = O(p-r2-qr ) = O{wjr(wjn-1logny/(2r+l)},

k=q

provided that p2q > n'TJdlogn where 'TJl 1(n-l+e logn)2r/(2r+l) is bounded. Therefore,

17
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In the next step of the proof, we examine the variance of !t (x j ):

Var{!t(Xj)} = n-1var {I: 1>e(X)1>e(Xj) +I: I: 7Pke(X)7Pke(xj)I(l bkll > ~)}
e k=O e

< n-1E {I: 1>e(X)1>e(Xj) +I: I: 7Pkl(X)7Pke(xj)I(lbkel > 0}2
e k=O e

< n-111/11 00 {I: l1>e(xj)1 +I: I: l7Pke(xj)II(lbkel > ~)}2 ,
e k=O e

the last inequality following from the Cauchy-Schwartz inequality and the fact that E{1>kl(X)2},

E{7Pkl(X)2} ::; 11/1100. Arguments similar to those used to derive (5.4) may now be employed

to prove that

Finally, we show that .6. converges to zero at the desired rate. Since

II(lbkel > 6) - I(lbkll > 01 < I(lbke - bkll > 6 - 0 + I(lbkel ::; 6, Ibkel > ~),

Ibkl7Pke(x)1 < pk(II7Plloo?I(lx - fp;;ll ::; Ap;;l)

then, with Ijk denoting the class of integers f such that IXj - fp;;ll ::; Ap;;!, we have

q-l

1.6.(xj)1 ::; (1I7P1l00)2 I: Pk I: I(lbke - bkel > 6 - ~)
k=O eEljk

q-l

+6 I: I: l7Pke(xj)II(lbkel > O·
k=O e

Since Ijk contains at most 2A + 1 elements then by (5.3), for all € > 0,
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where e' may rendered arbitrarily small by choosing u and e sufficiently small. The arguments

leading to (5.4) may be employed to prove that

q-l

oL L l¢kl(Xj )II(lbkll > ~) = O{(n-1 log n)t(wjn-1 Iog ny/(2r+I)}.

k=O l

Combining the estimates from (5.6) down we deduce that

The theorem follows from (5.4),(5.5) and (5.7).

(5.7)

o

Proof of Theorem 4.1. We first establish a lemma. Let B > 0 denote an arbitrary

constant, let x be any real number, and let F be any class of densities f such that IIflloo ::; B

uniformly in all f E F, and

lim sup If(x) - f(y)1 = o.
e-+O fE:F,lx-yl<f

Define I-l(h) = E]h(X),

Lemma 5.1. Let K satisfy the conditions imposed in Theorem 4.1, and let an,!3n denote

positive numbers converging to zero and such that n!3n -+ 00. Then

sup E sup {A(x) -1-l(h)}2 - (n!3n)-lf(x)jK2

fE:F Ih,6;l-II~Q'n

= 0 {(n!3n)-1 + (log n)3(n!3n)-2 +an Ilog!3n I( n!3n)-1 } ,

as n -+ 00.

Proof of Lemma 5.1. Write

A(x) -I-l(h) = _h-1 j {Fn(x +hz) - F(x +hz)}dK(z),

where F is the empirical distribution function. By the "Hungarian Embedding" of Koml6s,

Major and Tusnady (1975), there exist a Brownian bridge Bn and positive universal constants

• A 1/2
C}, C2 and A such that, wIth Dn = IIn{Fn - F} - n Bn(F)lloo,

P(Dn > ctlogn+t)::; C2exp(-At).

It follows that for any k > 0, ED~ ::; dk logk n, for universal constants dk. Thus, by changing

probability spaces if necessary,
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uniformly in h such that Ih,B;;:l_11 ~ an, where 02(1]n) denotes a random variable whose second

moment is of order o(1];). Put

By the covariance structure of the Brownian bridge,

By Taylor expansion,

(5.9)

Write

Sn(h) - Sn(,Bn) = -(n1/ 2 h)-1 J[Bn{F(x + hz)} - Bn{F(x + ,BnZ)}] dK(z)

+ {(n1/ 2,Bn)-1 - (n1/2h)-1} JBn{F(x + ,Bnz)}dK(z)

- I1(h) +h(h). (5.10)

Let 1l = {h : Ih/,Bn - 11 ~ an}. By Theorems 1 and 2 of Garsia (1970), we deduce that for

Brownian Bridge Bn ,

sup IBn(s) - Bn(t)1 ~ Dnu1
/
2+32u1

/
2{log(l/u)}O,

Is-tl~u

for 0 < u < 1, where 6 > 1/2 and D n is a random variable such that ED; ~ 3841og2. Using

this modulus of continuity and Taylor expansion we may show that

for some finite constant C3, depending only on 11J1l00 and K. Thus,

(5.11)

where C4 depends only on 1111100 and K.

Now, h(h) can easily be bounded from (5.9):

(5.12)
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Combining (5.8) - (5.12), we obtain Lemma 5.1. o

We now return to prove Theorem 4.1. Let 1f. = {h : Ihho(xj)-l - 11 ~ C2 /logn} and

J.L(h) = E!h(xj). Then, by (4.2) and (4.3),

Consequently, by Taylor expansion,

This together with Lemma 5.1 and (4.3) gives,

E{Jh(Xj)(Xj) - j(Xj)r ~ 2E [J.L{h}(Xj) - j(Xj)f

+2E[A(xj)(xj) - J.L{h(Xj)}]
2

[I{h(Xj) E 1f.} + I{h(Xj) rt 1f.}]

= O{(Wjn-1 )2r/(2r+l)}.

o

Proof of Theorem 4.2. We need only prove that 11, satisfies (4.3). Since h1wj -+ 0, then

by Taylor expansion,

Since j(r)(Xj) > C3wj for a positive constant C3, independent of Xj, then

(5.13)

It can be shown that

Using this and Bennett's inequality (e.g. Pollard 1984, pp. 192-3), for any £ > 0,

supp{lj<r)(x) - Ej<r)(x)1 > ~n} ~ 2n-(I-e)u2
/2,

x

where

21
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We are now in a position to prove that h satisfies (4.3) with bn = n-1. Note that by the

definition of h,

P{lh(Xj)h(Xj)-l -11> C2log-1 n}
< p{h(xj) < n-1} + p{h(xj) > Cd + p{lh(xj)h(xj)-l -11 > C2log-1 n}. (5.16)

The first term on the right-hard side is bounded by

since

The second term on the right-hand side of (5.16) is bounded by

since

The last term in (5.16) can be bounded by

p{llf(T)(Xj)j<T)(Xj)-11-2/(2T+l) -11> C2 log-1n}

< P{lj(T)(Xj) - Ej<T)(xj)1 > ~nf(T)(Xj)} + P(En)

where C6 is given by (5.17) and

(5.17)

When n is large, the set En is empty since by (5.13) and (5.15), on En

Therefore, we conclude that
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by taking u = J6/(1- c) max(l, 1jC6 ). This completes the proof. o
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