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Abstract

Mixed Poisson regression models, a class of generalized linear mixed models, are

commonly used to analyze count data that exhibit overdispersion. Because infer-

ence for these models can be computationally difficult, simplifying distributional

assumptions are often made. We consider an influence function representing effects

of infinitesimal perturbations of the mixing distribution. This function enables us to

compute Gateaux derivatives of maximum likelihood estimates (MLEs) under per-

turbations of the mixing distribution for Poisson-gamma and Poisson-lognormal

models. Provided the first two moments exist, these MLEs are robust in the sense

that their Gateaux derivatives are bounded.
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1 Introduction

This paper investigates estimation in mixed Poisson regression models, an im­

portant class of generalized linear mixed models (GLMMs). For these models,

the conditional distribution of the response is Poisson with a random mean

that depends on the random effects. The Poisson model assumes that the

mean is equal to the variance; however, for count data, the variance is usually

larger than the mean. Such overdispersion is often attributed to unobserved

heterogeneity in the linear predictor or positive correlation that exists between

responses. This overdispersion may be accounted for by the use of random ef­

fects. The Poisson mixed model as a model for overdispersed count data has

been studied by several authors, including Breslow (1984), Lawless (1987),

Dean (1991), Dean et al. (1989), Yanez and Wilson (1995), Van de Ven and

Weber (1995), and Hougaard et al. (1997).

When estimating the parameters, the mixing distribution of the random effects

is often assumed to be normal for computational convenience. Our goal is to

determine the robustness of the maximum likelihood estimates (MLEs) of

the fixed effects and of the variance component when the mixing distribution

is slightly contaminated. Specifically, the distribution of the random effects

is assumed to be an E-contamination of a member of a specified parametric

family. This introduces misspecification of the marginal distribution of the

response. We study the effects of this misspecification by using an infinitesimal

approach.

Although the issue of robustness has been considered by several authors for

linear mixed models, considerably less work has been done on robustness of
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Although the issue of robustness has been considered by several authors for

linear mixed models, considerably less work has been done on robustness of

parameter estimates in GLMMs. Neuhaus et al. (1992) examined mixingdistri­

bution misspecification in logistic mixed models. Using an approach by White

(1980) for general model misspecification, they showed that the parameter

estimates are typically inconsistent under misspecification; however, the mag­

nitude of the bias in the fixed effects is small. In addition, their simulation

studies suggest that valid standard error estimates of the fixed effects can be

obtained under misspecification.

Gustafson (1996) used an influence function approach (Hampel et al., 1986)

(Huber, 1981) to examine the robustness of maximum likelihood estimates

for certain conjugate mixture models under mixing distribution misspecifica­

tion. Extending Gustafson's approach to include a regression structure in the

mean, we develop a related, yet slightly more complex version of the influence

function, which is explained in the next section.

The paper is organized as follows. In Section 2, we introduce our model, and

discuss the influence function approach used to determine an estimate's ro­

bustness. Sections 3, 4, and 5 focus on robustness of MLEs in mixed Poisson

regression models. We consider in detail two popular models: Poisson-gamma

and Poisson-lognormal. For the first model, we are able to calculate the in­

fluence function of the MLEs explicitly and to perform a simulation study.

However, because of the intractable integrals that are involved, we obtain only

asymptotic results for the second model. All proofs are given in the appendix.
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2 Methods and Model Specification

Before discussing our model, it is necessary to introduce some terminology

and notation. Let Wbe an estimating function. We define the functional T(F)

to be the solution (in ()) of

1w(x; ())F(dx) = O.

Under general conditions, T = T(X I , X 2 , ••• ,Xn ) can be regarded as a func­

tional T(Fn ) applied to the empirical cdf of the data X = (Xl, X 2 , •.• ,Xn ).

Then T(Fn ) estimates T(F), where F is the true distribution of the data. If the

distribution of X is perturbed from F to FE = (1 - E)F + EG, then one might

study (8/8E)T(FE)IE=O as a measure ofthe sensitivity ofT to departures from

an assumed model distribution F. The quantity T(F; G) = (8/8E)T(FE)IE=O is

the Gateaux derivative of T(F) in the direction G. We find T(F; G) by formal

implicit differentiation of the equation

which yields

1w(x; T(FE))[F + E(G - F)](dx) = 0, (1)

T(F;G) = [-I \70W(x;T(F))F(dx)]-1 [I W(x;T(F))G(dX)]. (2)

It is appropriate to examine the quantity given in (2) because it gives a first­

order approximation to the asymptotic bias in estimating () that is introduced

by the E-contamination of F by a distribution G. That is, applying Taylor's
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theorem,

T(FE) = T(F) + ET(F; G) + O(E)

= e+ ET(F; G) + O(E).

The following definition of robustness is used throughout this article.

Definition 1 Let T be a functional (estimate). Suppose that the distribution

function F is contaminated by an epsilon amount of a distribution G. Then

T is robust against misspecijication of F if

[-JV'eW(x;T(F))F(dx)]-l [J W(x;T(F))G(dX)]

is bounded for all G.

(3)

We now specify our model as follows. For i = 1, ... , n, let Yi denote the re-

sponse variables, Ui denote the random effects, and Xi denote covariates.

Suppose that the conditional distribution of Yi!Xi , Ui is Poisson with mean

UiPi, where Pi = p(Xi) = exp(,Bo+ /31 Xi) , with /30 and /31 as unknown regres­

sion parameters. Suppose also that Ui and Xi are independent. Note that this

model specification is multiplicative on the Yi scale.

Let F denote the nominal distribution function of the random effects Ui and

f denote its corresponding density function. The mean and variance of Ui

are 1 and T, respectively. We are interested in estimating e= (/30, /31, T) via

maximum likelihood. The marginal density of Yi is given by

(4)

with marginal mean and variance given by Pi and Pi(l + PiT), respectively.
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By maximizing the log likelihood l(O, Y) = log(L(O; V)), where

n

L(O; Y) = II P(Yi = Yi; Xi, 0),
i=1

Y = (Y1, ... , Yn ), we can determine the MLE O. Our model is formulated for

a single regressor Xi. We note, however, that the case of multiple regressors

is handled similarly.

Consider the estimating function W = "\7ol(O; V). Then (3) can be written as

Jooo 1-1(0)s(0, u)G(du), where 1(0) = -E ["\7?2l(0; Y)] is the Fisher informa­

tion matrix and s(O; u) = E["\7ol(O; Y)! Ui = u] is the conditional expected

score matrix. Here, all expectations are taken with respect to the nominal

distribution function F. We can think of the integrand 1-1(0)s(0, u) as an

influence function for misspecification of the mixing distribution (Gustafson,

1996). By integrating this quantity, we capture the effect of a contaminating

distribution G on the parameter estimate for O. Rephrasing Definition 1, if

10
00

IF(u; B, F)G(du) = 10
00

1-1(0)s(0, u)G(du) (5)

is bounded for all G, then 0 is robust. Notice that if 1(0) is well-behaved, then

bounding the integral of the influence function reduces to bounding the inte­

gral of the conditional expected score matrix. We use the notation IF(u; 0, F)

to represent the 3 x 1 matrix of influence functions for the individual parameter

estimates. That is, IF(u;O, F) = [1F(u;So,F),IF(u;S1,F),IF(u;f,F)V.

The following assumptions are made throughout this article.

AI. Let IF = {FIF is a cdf on (0,00), J uF(du) = 1, and J u2F(du) = 1 + T}.

To ensure identifiability of the parameters, we let the nominal distribution

F E IF and, likewise, the contaminating distribution G E IF.
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A2. n-1I --+ 1* as n --+ 00, where 1* is positive definite.

A3. The covariates Xl, X 2 , ••• ,Xn are an i.i.d. sample from a nondegenerate

distribution whose support is a compact region of IR.2 .

A4. The interchange of expectation and differentiation of the log likelihood

and its derivatives is permitted.

Remark. We note that if JooouG(du) = 00, then we have no robustness. There­

fore, if IF(u; 8, F) has a linear component, the statistic is not fully robust, but

it is robust against contamination satisfying assumption AI.

In the following sections, we use an influence function approach to determine

the effect of G on the MLEs for the fixed effect parameters f30 and f31 and the

random effect parameter r. We consider the Poisson-gamma and Poisson-

lognormal models. We note that the subscript i is often omitted to simplify

notation.

3 Poisson-gamma Model

In this section, we examine a Poisson-gamma model, where the nominal mix-

ing distribution F is gamma with shape parameter l/r and scale parameter

r. Thus, we have

f( ) - 1 1/7-1 (_ / )
u - r 1/ 7 r(1/r) u exp u r .

It is well-known that this mixture results in a negative-binomial distribution

for Y Let p = j.t(1 + j.tr)-l. For the Poisson-gamma model, the influence
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function for {} is given by

IF(u; 0, F) = 1-1(0)8(0; u)
-1

Ex(p) Ex (Xp) 0 Ex [p(u - 1)]

Ex [Xp(u - 1)] (6)

where

o o

831 = -r-2Ex {EYIX,u['I/'(Y + r- 1
) - 'I/'(r- 1)!X, U = u]

- rp(u - 1) - log(l + J-tr)},

and 'I/' is the digamma function. We consider the family of integrals foOOIF(u; 0, F)G(du).

Our first result follows from elementary matrix algebra and assumption AI.

Proposition 1 We have

Proposition 1 gives a very strong robustness result for ~o and ~1' We conclude

that contamination of the mixing distribution has practically no effect on the

regression parameter estimates.

The influence function for T is a complicated expression which involves the

digamma function '1/'. From (6) we see that

1F(u; T, F) = ~31,
~33
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which can be written explicitly as follows:

-r2JEx {JEY/X,U[1/;(Y + r-1) -1/;(r-1)IX, U = u] - rp(u - 1) - log(l + j.tr) }

JEx Jooo {JEYIX,u[1/;'(r-1) -1/;'(Y + r-1)!X, U = u] - r 2p} F(du)
(8)

The following lemma by Lawless (1987), concerning 1/; and 1/;', will be used to

analyze this expression.

Lemma 1 (Lawless, 1987) Let Z be a random variable with possible values

0,1,2,. .. , and let JE(Z) < 00. Then

·001
JE[1/;(Z + r-1) -1/;(r-1)] = r L ( .) Pr(Z > j),

j=O 1 + rJ

and

It follows from Lemma 1 that the integrand in the denominator of (8) is

positive. Observe also that the denominator is not a function of u. Therefore,

we focus our attention on the numerator, or more specifically, the quantity

(9)

Using Lemma 1, we now compute an upper bound for (9). We refer the reader

to the appendix for its proof.

Lemma 2 We have

The next lemma gives a lower bound for (9), which comes immediately from

the fact that 1/; is increasing on R+. See Abramowitz and Stegun (1972) for

specifics.
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Lemma 3 We have

We have the following theorem.

Proposition 2 Let P = p(X). The integral JoooIF(u;f,F)G(du) is bounded

by the quantities

and

We omit the proof to this result. However, it follows directly from Lemmas 2

and 3, by replacing the expression lEY IX ,u[1/J(Y + T- 1) -1/J(T-1)IX, U = u] in

(8) with its appropriate bounds and then integrating with respect to G.

Propositions 1 and 2 show that the MLEs of a Poisson-gamma model are

robust against mixing distribution misspecification.

4 A Simulation Study

In a small simulation study, we explored how well the theoretical results for

a Poisson-gamma model describe the true performance of MLEs when the

gamma mixing distribution is contaminated.

For i = 1, ... ,1000, we generated covariates Xi that follow a standard normal

distribution and formed the regression structure Pi = 130 + Xi 131 , where 130 = 2
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and f31 = 2. Next, we let F denote the (nominal) gamma mixing distribution

and G denote the (contaminating) lognormal distribution. We generated ran­

dom effects Ui rv (1 - E)F + EG with a mean of 1 and a variance of T = 1

for E = 0, 0.01, 0.05, 0.10, 1. Then, Poisson responses Yi were generated, condi­

tionally on Ui and Xi, with a mean of UiPi.

Finally, using the same XiS, we simulated 1000 sets of Monte Carlo samples,

estimating f30, f31' and T via maximum likelihood. The MLEs were computed

using the function glrn. nb (Venables and Ripley, 1999) in Splus.

Table 1

Estimated parameter values under an assumed Poisson-gamma model. The true

mixing distribution is (1 - E)F + EG, where F is gamma and G is lognormal. The

true parameter values are ((30,(31,T) = (2,2,1). For a sample of size n = 1000, the

.average standard error of the estimates is 0.04.

Parameter Estimates

So Sl f

a 2.00 2.00 1.00

0.01 2.00 2.00 1.00

0.05 2.00 2.00 0.84

0.10 2.00 2.00 0.74

1 2.00 2.00 0.67

Observing Table 1, we found that for all amounts of contamination, the re­

gression parameter estimates are unbiased. However, as E increased, the bias in
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T increased significantly. This behavior is not surprising since the theoretical

robustness results obtained for the regression parameters are much stronger

than the one obtained for T.

It is important to note the E = 1 case. This situation often occurs in practice.

That is, the data follow a Poisson-lognormal distribution; however, the esti-

mates are computed under an assumed Poisson-gamma distribution. Even un-

der complete mixing distribution misspecification, we still obtained unbiased

estimates for the regression parameters. The variance component estimate,

however, showed significant bias.

We also compared Fisher's information and the Monte-Carlo sample estimates

for the variance of the MLEs. For E :::; 0.10, we observed reasonably good

agreement between these variance estimates. When E = 1, Fisher's information

tended to underestimate the variance of the MLEs, implying that inference

based on the MLEs under complete mixing distribution misspecification may

be unreliable.

5 Poisson-lognormal Model

Let CJ2 = log(1 + T). The lognormal density is given by

f(u) = 1 exp (_ (logu + CJ2 /2)2).
uCJ(27r)1/2 2CJ2

Thus, the Poisson-lognormal probabilities are given by

flY 1000
( (lOgU+CJ

2
/2)2)Py = uy

-
1 exp - exp (-Ufl)du.

yh/27rCJ2 0 2CJ2
(10)

Unlike the Poisson-gamma distribution, the Poisson-lognormal marginal prob-
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abilities cannot be written in a closed form. However, Shaban (1988) gives a

general method to compute the first derivatives of the log-likelihood function.

We use these results to compute the conditional expected score matrix s(B; u)

whose entries are given below:

s(13o; u) = lExlEYJx,u { Py1(yPy - (Y + 1)Py+1)1 X, U = u} ,

S(131; u) = lExlEylX,u {XPy1(yPy - (Y + l)PY +l) IX, U = u}

and

S(T; u) = (1 + T)-1lEx lEY lx,u {py1[(y2 - Y/2)Py - (Y + 1)(2Y + 1/2)PY +l

+ (Y + l)(Y + 2)Py +21IX, U = u}.

Since IF(u; e, F) is a linear combination of the terms of s(B; u), we focus on

bounding the integrals of these terms. However, notice that the terms in the

score matrix s(B; u) involve the ratios Py+l/Py and Py+2/ Py. We first determine

the behavior of these ratios before analyzing IF(u; e, F).

Let w = log(u) and v = y - 1/2. We rewrite (10) as

J.1y
Py = -, exp {a2 y(y - 1)/2}H(y),

y.

where

(11)

It follows that

Py+l _ _ J.1_ {2 }H(Y + 1)
D - exp a y H()
"y y+1 Y

and

Py+2 J.12 { 2( )}H(Y + 2)
-~-y = (y+1)(y+2)exp a 2y+1 H(y)'

(13)

(14)

To gain insight into the behavior of the Poisson-lognormal probability ratios,

we study the behavior of H(y+p)/H(y), for p fixed. We use several results of de
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Bruijn (1953), who studied the asymptotic properties of a function similar to H

using saddlepoint techniques. From his methods, we show that asymptotically

the ratios H(y + p)/H(y) behave like exp {_p(J2 y}.

Theorem 1 Let p be fixed. As y -+ 00,

H(y + p) { logy} (1)log H(y) = -p (J2 y -logy + (J2 y + 0 Y . (15)

Corollary 1 There exist constants Yo and C that depend only on fL and (J2,

such that if y > Yo,

H(y + p)
H(y) ~ C exp {_p(J2 y}. (16)

Briefly, we sketch the proof of Theorem 1. Using a power series expansion, an

asymptotic representation of H is given in terms of its saddlepoint. Next, we

.obtain a first-order Taylor series approximation for the saddlepoint, and we

substitute this approximation into the H expansion. Finally, an asymptotic

representation of the ratios of H functions is obtained. For more details of de

bruijn's results and the proof to Theorem 1, see the appendix.

We now state our main result for this section.

Theorem 2 The integral of the conditional expected score matrix that has

entries given by
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and

(1 + 7)-1 loOO Ex EYlx,u {(y2 - Y/2) - (Y + 1)(2Y + 1/2) P;;l

+ (Y+1)(Y+2)P;;2!X,U=u}G(dU), (19)

is uniformly bounded over G E ]F.

The proof of this result, given in the appendix, follows mainly from the rela-

tionships established in equations (13) and (14), along with Corollary 1.

It follows from Theorem 2 that JoooIF(u; 0, F)G(du) is also uniformly bounded

in G. Therefore, we conclude that the MLE 0for the Poisson-lognormal model

is robust against mixing distribution misspecification.

6 Conclusions

We have focused on the effects of mixing distribution misspecification on MLEs

in mixed Poisson regression models. Extending the influence function approach

of Hampel et al. (1986) to the unobservable random effects, we computed

bounds for the Gateaux derivatives of regression parameter estimates and

the variance component estimate. For the Poissori-gamma and the Poisson-

lognormal models, the MLEs are robust against small perturbations of the

mixing distribution, provided that the first two moments exist. These results

were obtained by using properties of the digamma function and saddlepoint

approximations.

In a limited simulation study, the robustness of the regression estimates was

verified for misspecified Poisson-gamma models. However, the robustness of

the variance component estimate was verified only for small perturbations from

15



the nominal model. We conclude that, in practice, the modeling assumptions

do not have a substantial effect on regression parameter estimates. We suggest

considering an alternative estimation method for the variance component if

the modeling assumptions may be incorrect.
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A Proof for Poisson-gamma Model

Proof of Lemma 2 By using Lemma 1 and conditioning on X and U, we

have that

JEYIX,u[~(Y+ T-1
) - ~(T-l)IX, U = u]

00 1
= T L ( ') Pr(Y > jlX, U = u)

j=O l+TJ

00 _ fok-1 dj
::; T L Pr(Y = klX, U = u) (1 .)

k=l 0 + TJ
00 00

= TUj.L L Pr(Y = k - llX, U = u) - T L Pr(Y = klX, U = u)
k=l k=l

=T(Uj.L - 1 + exp (-Uj.L)).
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B Proofs for Poisson-lognormal Model

De bruijn used a series of Taylor expansions and substitutions to prove several

asymptotic results concerning the saddlepoint ofthe H function given in (12).

We present, without proof, the ones that are very important to this paper. All

of these results can be found in de Bruijn (1953).

We first introduce some notation. Let v = y - 1/2. Let A = J-la2e( = a2v - (,

where ( is the saddlepoint of (12).

Lemma 4 We have

A2 + 2A 1
log H(y) = - 2a2 - 2" log A,

uniformly for IAI --t 00, jarg AI < 37r/4 - 6, where 6 > O.

(B.1)

To understand how (B.1) depends explicitly on y, it is necessary to examine

A.

Lemma 5 Let a = J-la2 and v' = v / J-l. As y --t 00

_ , _ ' log v' log2 v' _ logv' (log3 v')
A - av log v + , + 2 2 ,2 2 ,2 + 0 ,3 'av a v a v v

(B.2)

2 log2 v' log v' (lOg3 v')
A2 = av' -2av' logv'+2logv'+log2 v' - ,-2--,+0 ,2 ,(B.3)

av av v

and

log v' (lOg3 v')log A = logv' + loga - --, + 0 ,2 .
av v

We use de Bruijn's results to prove the two theorems from Section 5.

17
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Proof of Theorem 1 Combining the results from Lemmas 4 and 5 gives

(B.5)

Next, for p fixed, consider log H(y+ p), which contains terms involving powers

of log [(v + p)/J.l] = log(v/J.l) + p/v + o(l/v). Then, after tedious calculations,

Recall that v = y - 1/2, and consider log(y - 1/2) = log y - 1/2y + o(l/y).

Then (B.6) becomes

H(y+p) { 2 logy ( IOgJ.l) 1 (1)log = - p (J y - log y +-- + 1 - -- - + 0 -
H(y) (J2 y (J2 Y y2

(J2 } { 1 (J2 } ( 1)- "2 + log J.l + p2 Y+"2 + 0 Y

{
2 logy} (1)= - p (J y - log y + (J2 y + 0 Y

as claimed.

Proof of Theorem 2

Here, we prove only the boundedness of the integral for /30. The proofs for the

/31 and T terms are similar.
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Let p = p(X). Using (13), consider the expectation

(B.7)

where p(ylu) is the Poisson mass function with mean up. Consider the integrals

(with respect to G) of the three terms in braces individually.

It is clear from Assumption Al that 1000 upG(du) = p. For the second term,

we have

Yo H(y + 1) pY rooLP exp (a 2y) H() -,io uYexp (-up)G(du)
y=o y y. 0

YO 2 H(y + 1) yY
:::; Lpexp (y(a - 1)) H() "

y=O Y y.

where we have used simple calculus to bound uYexp (-up) by (yj p)Y exp (-y).

Using Corollary 1, we find an upper bound for the integral of the third term

that depends only on p and a. Substituting for the three terms in (B.7) gives

the desired uniform bound.
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