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Abstract

Let Xl' X2 . •. be a sequence of random variables and write x~n) for
th .

k largest amongthe Xl' X2 ' ••• ,X.. If {k } is a sequence ofn n .

integers such that k -+00, k In -+ 0, the sequence {Xk(n)} is referred to
n n

n
as the sequence of intermediate order 8tati8tio8 corresponding to the

intermediate rank 8equenae {k }.
n

The possible limiting distributions for x~n) have been characterized
n .

(under mild restrictions) by various authors when the random variables

• I

XI 'X2... are independent and identically distributed. In this paper we

consider the case when the {X } form a stationary sequence and obtain a
n

natural dependence restriction under which the "classical" limits still \I

apply.

It is shown in particular that the general dependence restriction

applies to normaZ sequences when the covariance sequence {rn} converges

to zero as faat as an appropriate power n-P as n -+ 00.

Key Words and Phrases: order statistics, stationary processes, ranks,

intermediate ranks.

Research supported by the Office of Naval Research under Contract
NOOOI4-75-C-0809.



2

1. Introduction.

The problem of finding the asymptotic distribution of the maximum

term from a stationary dependent sequence of random variables (r.v.'s)

has been extensively investigated in the literature. Of particular

interest are the cases in which the concept of "approximate independence"

is formulated mathematically in terms of conditions such as "strong

mixing" or, for normal sequences, conditions on the rate of decay of the

additional restriction, the (suitably normalized) maximum of a dependent

sequence has the same limiting distribution as the maximum of a corresponding

independent and identically distributed (i.i.d.) sequence, provided the

latter sequence has a limiting distribution. This limiting distribution

is thus necessarily one of the three classical types of extreme value

limit laws. For stationary normal sequences Berman (1964) found

covariance conditions under which the distribution of the maximum

converges to the double-exponential limit, law, which arIses-lil-the LLd.

normal case. More recently, Leadbetter (1974) obtained the general

result of Loynes under a weaker "distributional mixing" assumption and

showed that with Berman's covariance conditions the normal case may be

placed into the general framework. Additionally, Leadbetter considered

the related high-level exceedance problem for stationary sequences,

leading to corresponding limiting results for extreme order statistics.

Our objective in this paper is to obtain analogous results for

so-called inter.mediate order statistics. Specifically, for a given

, {} (n) thsequence of r. v. s Xn , let Xk denote the k largest of Xl"'" Xn,

and let {k } be integers such that 1 ~ k ~ n for each n. Then if
n n
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kn + 00 but kn/n + 0, {X~n)} is called a sequence of intemediate order
n

statistios and {k } an intemediate rank sequence. Wu (1966) found.
n

that, subject to the mild restriction that k. increase monotonically,n

when the {Xn} are LLd. the only possible nondegenerate limit laws for

the normalized sequence {a (X~n) - b)} are normal and lognormal. In
n n n

Section 2 we will establish general conditions under which the intermediate

order statistic xk(n) from a stationary dependent sequence {X } has the
nn

same asymptotic distribution as it would if the {X } were i.i.d. These
n

conditions parallel those used to obtain the corresponding result in the

extreme order statistic problem, a primary difference being that certain

more rapid "mixing" rates have to be assumed. Using our procedure it is

convenient to deal directly with an appropriate level exceedance problem

-e
and to regard that of asymptotic distributions as a specialization. In

Section 3 we show that under a certain decay of the covariance function

our general conditions are satisfied by a stationary normal sequence

{Xn}; in this instance it is known (see Cheng (1965)) that the asymptotic

distribution of x~n) for an independent sequence is itself normal and
n

hence is also normal in the dependent situation considered.

2. The general stationary case.

First suppose that {X} is an i. L d. sequence of r. v. 's withn

marginal distribution function (d. f.) F(x) = P(Xl S; x) and that {kn} is

sequence. Let {u } be real numbers, write
n

I .. where I . is the indicator of the event {Xl:> un}, L e.n,l n,l

an intermediate rank
n

S = L
n i=l

I . = I if X. > U and I . = 0 otherwise, so that Sn is the numbern,l 1 n n,l

of exceedances of the level un by Xl"'" Xn j and let ~ be the standard
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normal distribution function. It follows from the Berry-Esseen theorem

and the basic equality

that

peS < k )
n n

(2.1)

if and only if

P(X~n) s un) ~ 4> (u) as n ~ 00

n

(2.2) 1 - F(u ) = k In - uli</n + o(lkln) .n n n n

Thus, there are constants an' bn (an > 0) such that an (X~n) - bn) has a
n

limiting distribution if and only if there exists a function u(x) such

that, writing u (x) = x/a + b ,
n n n

e-

(2.3)

for all continuity points of 4>(u(x)), and furthermore if (2.3) holds then

Pea (Xk(n) - b )s x) ~ 4>(u(x)) as n ~ 00
n n

n

for all continuity points of 4>(u(x)). Wu (1966) proved that if {k } is
n

nondecreasingthen the only possibilities for u(x) are

(i) u(x) = -ex log Ixl x < 0 (ex > 0),

u(x) = 00 x ~ 0

(ii) u(x) = _00 x S 0 eu(x) ex log x 0 (ex > 0)= x >
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(iii) u (x) = x

(iv) functions obtained by replacing x by ax+ b (a > 0) in

(i), (ii), or (iii).

It may be noted that if for example F is continuous then for any real u

it is possible to choose levels u satisfying (2.2), and hence such that
n

(2.1) holds, but of course these levels may not necessarily constitute a

family u (x) = x/a + b which satisfies (2.3) for some function u(x).n n n

Our approach to proving that, say, (2.1) holds for a stationary

dependent sequence {X } is to assume that (2.2) holds and then to use a
n

dependent central limit theorem to prove that

and thus that (2.1) holds. Since (2.1) and (2.2) are equivalent for

independent sequences, the assumption (2.2) can alternatively be stated

as P(~~n) ~ un) -+ ~(u) where ~~n) is the knth order statistic in the
n n A A

"associated independent sequence" Xl' X2 ' ••• , that is, an 1. 1.d. sequence

which has the same marginal d. f. F as each X. For easy reference we
n

start by stating two known results from dependent central limit theory.

The first one is Lemma 5.2 of Dvoretzky (1972), while the second one

follows for example from Theorem 2.3 of Durrett and Resnick~(1978).

Lemma 2.1. Let X be an r.v. on (n,A,p)" write a(X) for the a-field

generated by X" let B be a eub-.a-field of A and define

a = sup{ Ip(AB) - P(A}P (B) I: Ae:a(X) , B€B} •

If IXI ~ 1 then



EIE(xIB) - E(X)I ~ 4cx •

N
Lemma 2.2. For n ;::: 1 Zet {X .}. n

1
be r. v. 's on the probabiUty spaaen,l 1=

(Q,B,P) and let {C .} besub-o-fields of B suah that X • isn,l n,l

C .-measurabZe. Suppose further that C . c C .' 1 and thatn,l n,l n,l+

E (X • 11 C .) = 0 for 1 ~ i < N • If IX • I ~ £; ., 1 :$; i ~ N ., forn,l+ n,l n n,l n n

some aonstants £; -+ 0., and if
n

6

(2.4)

N
n P
I E(X

2 .1 C . l) -+ 0
2 as n -+ ex>

i=2 n,l n,l-

for some aonstant 0 ;::: 0., then

N
n

P( I
i=l

X • ~ x) -+ <P(x/o) as n -+ ex>n,l

for aU real x., where <P(x/O) is defined to be 1 for x ;::: 0 and 0 for

x < o.

To be able to give conditions restricting the dependence in the

sequence {Xn } it is useful to introduce certain "mixing coefficients."

'Let B k = 0(1 l' ... ,I k) be the a-field generated by I l' ... , I kfn, n, n, n, n,

define

= sup{ Ip({x .~u} n B) - P(X .~u )P(B) I; i~r, Bdf".···.',ik.. &.'.;'.F ,n+l n n+1 n ,. -... .

= sup{lp({x .~u , X .~u} () B) - P(X .~u , X .~u )p(B)I;
n+l n n+J n n+l n n+J n
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and put

It is easily checked (by simply listing the events of o(In,n+i' 'In ,n+j))

that

4a(n,k) ~ sup{ IP(AnB) - P(A)P(B) I; A € C1(In ,n+i' In,n+j)

for some i , j ~ 0 , Ii - j !~ k , B € B . k}.n,n-

Our main dependence condition, to be called A(u ), depends on the levels
n

un and involves sequences {.l/,n},{.Q;~} of integers which of course may be

chosen to be different for different sequences {u }.
n

Condition A(u) will be said to hold ifn

n
kn

[11<]
n

I
. i=l

Ip(xl>u , Xl .>u ) - (l-F(u ))2! -+ 0 as n -+ 00 ,
n +1. n n

and if furthermore there exist sequences {t } and {t'} of integers
n n

satisfying t'st ~11< , t'=o(t), t =0(11<) such thatn n n n n n n

The mixing condition in A(u) differs from the strong mixing
n

condition which uses the mixing coefficient

a(n,k) = sup{/P(AB) - P(A)P(B)I; A€o(X,X l,.··),B€O(XI,···,X k)}'n n+ n-
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in that substantially fewer events are involved. However, for a strongly ~

mixing sequence, clearly cx(n,k) ~ a(n,k') if k ~ k' ,and hence the

second part of A(u) follows if
n

n cx(n,.Q.')-+-O as n-+-co.
v'k

n
n

However this condition may be harder to check; in particular this seems

to be the case when {X} is normal.
n

To state the next lemma, which contains the major part of the proof

of (2.1) for dependent sequences, we need some further notation. We

partition the first n integers into long and short "intervals"

Jl'Ji,J2,J2,... ,JN, with Jl'Ji, ... ,JN of alternating lengths
n . n

.Q. ,.Q.', ••• ,.Q. and with I
N
' of length r ~.Q. + .Q.'. Clearly

n n n n n n

e-
(2.5)

Further, define C _
n,l

and put

N - n/.Q. .n n

i
= 0' (I -.:; j € u J k) and C' -

n,J· k=l n,l

i
= o(l _; j E U J.p,

n,J k=l

x . =n,l

and

X' _ =
n,l

for 2 ~ i ~ N .
n

L {I - - E(l -IC - l)}/Ik- J. n,J n,J n,l- nJ€ •
1

L {I - - E(l _IC' - l)}/Ik
- J' n,J n,J n,l- n
J€ i



Lenuna 2.3.

Then

(2.6)

and

(2.7)

Suppose that the stationa:Py sequence {X } satisfies A(u ).
n n

Nn
I I IE(l . I ) ... E(l .)E(I k)!lk + 0

'-2 . k J n,J n,k n,J n, n
1- J, € •

j~~ 1
~..;. '"

9

as n + 00, and (2.6) and (2.7) hold also 1JJhen J. is replaced by J~ and
1 1

C . by C' .. If in addition (2.2) holds thenn,l n,l

Nn LlI E(X
2 ·lC ..1) + 1 ,

i=2 n,l n,l-
(2.8)

as n+ oo •

Proof. Since E{l .) = 1 - F(u) and E(l .. I k) = P(X.>u , Xk>u)n,J n n,J n, J n n

it follows by stationarity that

N
n
I I IE (I. I .) - E(l . ) E(I k) II k

'-2 . k J n,J n,k n,J n, n
1- J, € •

j;tk 1

s Ntn n

[/knl
t /P(X

1
>u

n
, Xl .>u ) - (l-F(u ))21/k ,

l. +1 n n n
i=l



which tends to zero as n -+ 00 by A(u -)n

proves (2.6).

since N J/, /k '" n/k .n n n n This
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Next by Lemma 2.1 and stationarity we have for j ~ J. that
1

EIE(! ·Ic i 1) - E(! ·)1 S 4a1 (n,J/,nf ) S 4a(n,J/,n') ,n,J n, - n,J

and hence by A(u) that
n

N
n

L L
i=2 jEJ.

1

EIE(I ·IC . 1) - E(! ·)I/Ik S 4N J/, a(b J/,'rf~'-:,:~,n,J n,1- n,J n n n "n .' -,n

-+ 0 as n -+ 00 ,

and (2.7) follows.

To prove the first part of (2.8) we note that
e-

(2.9) E (X
2 .1 C . 1) =n,1 n,1- L {E(!.! klC ·1) - E(! ·Ic ·1). k J n,J n, n,1- n,J n,1-J, ~ .

1

• E(! k!C . l)/k } •n, n,1- n

Reasoning as above, we have

(2.10)

N
n

L L
i=2 j,k ~ J.

1

EIE(! .! k IC . 1) - E(! .! k)I/~.i.'-.n, J n, n, 1- n, J n, n·, .'

S l6N J/,2(i(n, J/,' )/knn n n

-+ 0 as n -+ 00 ,



and furthermore, since II .1 s 1,n, J

11

EIE(I ·Ic . l)E(I k!C '1) - E(Ik)E(I ·)1n,J n,1- n, n,1- n, n,J

= EI{E(I ·Ic . 1) - E(I .}}E(I k lC . 1)n,J n,1- n,J n, n,1-

+ E(I .){E(I k lC . 1) - E(I k)}1n,J n, n,1- n,

S EIE(I ·Ic . 1) - E(I ·)1+ EIE(I klC . 1) - E'(I k)1n,J n,1- n,J n, n,1- n,

and thus it follows similarly that

(2.11)

N
n
L L EIE(I ·Ic . l)E(I klC . 1) - E(I .JE(I k)f/ k

. 2 . k n,J n,1- n, n,1- n,J n, n
1.= J, € J.

1.

-+ 0 as n -+ 00 •

Further, by (2.6), (2.5), and (2.2),

N
n
L L {E(I. I k) - E(I .)E(I k)}/k

. -2 . k J n, J n n, J n, n
1.- J, E i

N
n

= L I {E(I .) - E2 (I .)}/k
i=2 j€J. n,J n,J n

1.

N
n

+ I L {E(I. I k) - E(l .)E(I k)}/k
i=2 j,k€J. n,J n, n,J n, n

j;tk 1.

= (N -1) t {(1-F(u )) (1- F(un) ) 2}/ kn + 0 (1)n n n

-+ 1 as n -+ 00 ,

and together with (2.9) - (2.11) this proves (2.8).
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Finally, the proofs of the remaining assertions of the lemma are

similar and are left to the reader.

Our main results now follow easily.

Theorem 2.4. Let {X } be a stationat>y sequenoe of r. v. ' s ~ "let {k } be
n n

an intermediate rank sequenoe~ and "let S be the n'UTTlber ofe:cceedances
n

of u by xl"'" X. If (2.2) and A(u) ha"ld thenn n n

peeS -E(S ))/1"k ··~x) -+ q;(x) as n -+ 00n n n

for an rea"l x ~ and theroefore

p(X(n):s;u ) = peS <k ) -+ q;(u) as n -+ 00 •
k n n n

n

Proof. Since II . - E(l.\ C • 1) I :s; 2 we have thatn,J n,J n,l-

IX . I :s; 2inllk"n -+ 0, and it follows at once from (2.8) and then,l

definition of {X .} that the conditions of Lemma 2.2 are satisfiedn,l

(with (J2 = 1), and hence that

o

e-

N
n

L:
i=2

Similarly it follows that

N
n

L:
i=l

d
X • -+ q;n,l

d
XI • -+ 0
n,l

as n -+ 00 •

as n -+ 00 •

Together with Lemma 2.3 this implies that
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N
n

+ I I· {E(l ole 0 1) -E(l 0)}/11<
10=2 0 J n,J n,l- n,] n

J€ i

N
n

+ I I {E(I ole' 0 1) - E(I o)}/Ii<
1
0=2 0 J' n,J n,l- n,J n

J€ i

d
-+ ~ as n -+ 00

and thus proves the first part of the theorem.

Next by (2.2)

(k - E(S ))/I"k = (k - n(l - F(u )))/11<n n n n n n

-+ u as n -+ 00 ,

and, writing

peS <k ) ::: PC(S .. E(S ))/1]( S (k .. E(S ))/I"k) ,nn n n n n n n

the last part of the theorem follows at once since ~ is continuous. 0

Using this result we obtain the following theorem, giving sufficient

conditions for

same as if the

X(n)
kn

X 's
n

to have an asymptotic distribution, which is the

were L Ld.

Theorem 2.50 Let· {Xn} be stationarry and suppose that for> some eJonstants

a > 0, b
n n

Pea (i(n)_b )sx) + ~(u(x)) as n -+ 00n _Ok n
n
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fo1' aZZ continuity pointe x of u whe1'e {~~n)} ie the independent e
n

sequence associated with {X}. If A(u) is satisfied for u = x/a + b
n

_n n n n

f01' aZZ continuity points x for which u(x) is finite" then f01' 8UCJh x

Pea (~n)-b)~X)+~(u(X)) as n+ oo •
n n n

This then hoZds for aU x if u is continuous (as is the case when fo~

exampZe k increases monotonicaZZy).
n

3. The normal case.

In this section the general results obtained above are applied to

normal sequences. Let {Xn } be a stationary normal sequence which for

convenience is assumed to be.standardized--totlave--zero--means--an'CUiiii
u

-----------

variances.

satisfies

(3.1)

We assume that its covariance function r# EXIXln +n

for some constant p > 0 to be specified later. Write

o=sup Ir _I , 0 = sup Ir I .
n~l n n m~ m

It is easily seen that since r -+ 0 we must have 0 < 1, and that (3.1)
n

implies 0 = O(n-p) . Further, let {k } be an intermediate rank sequencen n

and define e = e({k
n

}) by

e'e = inf{6 1
; kn = O(n )}
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8+EClearly 0 s; e s; 1 and k = O(n ) for all E > O.
n

Now, for x real, suppose that u satisfies (2.2) (with u replaced
n

by x), i.e. suppose that

(3.2) 1 - ~(u ) = k /n - xlF""/n + o(lF""/n) .n n n n

By making a first order expansion of ~ around the point b , it is
n

-e

easily seen that one such u is u = x/a + bn withn n n

-1 ~b = ~ (1 - k In) , a = n~' (b ) / v k •n n n n n

Somewhat more generally, u = x/a' + b' for a' ,b' satisfyingn n n n n
-1 -1a a' +1 , a (b' - b )+0 also satisfies (3.2). We require the followingn n n n n

two useful technical results. First, for· {u } satisfying (3.2) we have
n

and taking logarithms gives u ,.., 12 log n/k
n n so that

(3.3)

In the following two lemmas we find conditions on p which ensure

that A(un) is satisfied.

Lemma 3.1. Suppose that 8 < 1 and that· {r } satisfies (3.1) for some
n

p > 8. Then



[~]

; I
n i=l

Ip(xl>u , xl .>u ) - (l-<P(u ))21 -+ 0 as n -+ 00 •n +1 n n

16

.,...... ..

Proof. As a special case of a result used by Berman (1964) and others,

we have that

\

\ -u
2/(1+lr.l)

Ip(xl>u , Xl .>u ) - (l-<P(u ))2 1 S Klr.le n 1n +1 n· n 1

for some constant K (depending only on 0 but whose value may change from

line to line below). Hence

n
k

n

[v'kn ]

I Ip(Xl>u-n' Xl+i>u~? - (1-~(U;n))21
j=l ",.'

n
F,:

n

[ik]n
I

i=l

and we estimate the latter sum by splitting it into two parts: for
\

I :s; j :s; y and for y < j :s; [I"k], where y = [(n/k /J with
n n

o < E < (l-o)/(l+o)~ By (3.3)

n y -u
2
/(l+lr.ll '(:.·k t·

2/(1+O)
k I Ir i len 1:s; K t .. nn (log t )y

n i=l n n

-+ 0 as n + 00

by the choice of y.

Since e"< 1 and 0 =0(ii...~-·9y the assu:mpt1onGjf·"~t~"J:;-:w':--
n n

have that Oy u~ 0+ 0 as u + 00, and hence (3.3) gives, for i> y,
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Thus, (defining the sum to be zero for y ~ [lk
n

]

elk] 2 ' ,. [Ik]n -u 1(1+ Ir. I) k nn I Ir.le n 1 K2!. log n I Ir·1k s ki=y+1 1 n i=y+l 1n n

k [/kn ]
i -p }1'

n log n Is K- kn n i=y+1

For the t.hreeseparate cases p < 1" P = 1" and p > 1" the last sum is

bounded by a constant multiple of k C1- p
)/2" log Ik , and 1 respectively.n n

Therefore in'any case the expression on the right-hand side tends to zero

i!

sincep > 6" thus concluding the proof of the lemma.

To es.tablish the latter pa:i-'t of A(u) we shall furtherextendilri
n

important method, due to Slepian, Berman, and Cramer, from the extreme

value theory of normal processes. In addition to conditions on p, we

shall for convenience assume that kn does not increase too sl~wly, or

more precisely that

o

(3.4) k /(log n)2/P + 00 as n + 00 •
n
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Lemma 3.2. SUppose that {r
n

} satisfies (3.1) and (3.4) with e
P> max(38/2, 2(2-1/8)) and that {u} satisfies (3.2). Then there

n_ _ .. ----- --._ _--_.-- •....__ _.~-..- . -- --- _.. -.-----_.-.-

ewlst sequenaes o'n} and·· {R,~} whiah satisfy the requiremefJts of A(1,1n)'

Proof. We first show that there exists a sequence {R, I} with R, I ~ ~n n n

and R,~ = 0 (/'kn) such that

(3.5)

First, by (3.4), a sequence {R,~} can be chosen so that

R,~= 0 Ukn ) , R,~~ Ikn but such that R,~ ~ (log n) 1/p. We shall impose a

e-
slight 'further restriction ont~ Iater,-'--but for· the momel1t]uSt-assUme

. - ._-._-_._.-.-_.~_.-.--.__ . __._--.. -.. __ .--

Then since 0 ~ Kn- P by (3.1),n

~ K(log n) (log n) -1 = K, and hence by (3.3), fo'X' j ~ R,~,

these properties.

2
un 0R,I

n

(3.6)

2/ .-u (1+0.)
e n J

_U
2

"'U
2 0./(1+0.)

= e n n J J ~ K(k In) 2 log n/k .
n n

Now let B € <1(I 1"'" I fll) and R, ~ 0 be fixed. Then B is an, n,n-,lV
n
n-R,I

n
disjoint union of sets of the form n {I . = x.}, where each x. is

. 1 n,l 1 1
1=

zero or one; and hence for any j, 1 ~ j ~ n - R,~.

B =BO{I . = O} u B1{I . = I}
n.J n.]

where BO and B1 are sets of the same general form as B, except that the

jth factor in the intersections are missing. It is evident that
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B ={(Xl' ... , X 0 I ) E B} , B. ={(Xl' .•• , X. 1 ' X. 1"'" X 0') E B.} ,n-IV 1 J- J+ n-IV 1n n

i = 0,1 ,

n-R.' . n-R.l-ln - ....." n
for some sets BE R , BO' B1 € R

Let Rl be the covariance matrix of the vector (Xl"'" Xn_Q, I , Xn+R.)'
n

let RO be the covariance matrix it would have if (Xl"'" Xn_R.l) and
n

Xn+R. were independent, and define ~ = hR1 + (l-h)RO' Without loss of

generality it may be assumed that RI and hence ~ is positive definite,

and writing

F(h) = J... f
X'E'lr

where x = (Xl'"'' Xn_R.l) and f h is the density function of a~jEirn.;.;itie3Hi
n

normal vector with covariance matrix ~, we have that

(3.7) Ip({x +o:su }nB) - P(X o:su )p(B)1 = IF(l) - F(O)In IV n n+IV n

Proceeding as in Leadbetter, Lindgren, and Rootzen (1978, pp. 46-47),

we obtain

(3.8) F I (h) =

n-R.l
nr ~+Il_'- J.•.:..J

j =1 n .""..:.J X E B

As above,' {x E: B} = {X-* E BoHx. :s u } u {3C* E B
1

}{x. > u } where
J n' J n

x * = (xl"'" x. l' x. 1"'" x 0I)' and performing the integrationsJ- J+ n-IVn
over x. and x ° givesJ n+IV



_00

u
n

J
x. = _00

J
x .= _00

n+J/,
ax.ax nJ n+,lV

= 1· ..1 fh(x.=x n=U)- J n+,lV n
Y"'e: Bo

00

~s 1...1 fh(x. =x n =u )J n+,lV n
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The last integral is easily seen to be

where fh(x. = x n = u) is the function of x",- which is obtained by
J n+,lV n

putting x. =u , x. n =u in f
h

.J n n+,lV n

_u
2
/(l+lr J/, ·1)

bounded by Ke n n+ -J , with K depending only on o. Next, making

the change of variables y. =x. , i it j , y. = -x. and writing
1 1 J. J

,'"."

y* = (Yl'''''Yj-l' Yj+l'·"'Yn-J/,~)' we have

J...J
x * e: Bl

00

1
x.=u

J n

u
n

1
x =_00

n+J/,

u
n

1
Y =.00n+J/,

where gh is defined from (Xl"'" X. l' - X., X. 1"'" X n I , X. n) in the
J -;' J J+ n-,lVn n+,lV

same way as f h is defined from (Xl"'" Xn_J/,l , Xn+J/,)' Agaif' the
n -u J(1+Jr J/, ·IL

modulus of the latter integral is seen to be bounded by Ke n n+.-J

and it follows that

IJ.. ·l
xe:B

u
n

1

Inserting this into (3.7) and (3.8) gives



Ip({x n:Su }nB) - P(X n:Su )p(B)I:s K
n+N n n+N n I

j=l

_u2
/(1+ Ir n .1)

I I n n+N-Jr n • en+N-J

21

n
:S K I

j=R,'
n

_u2/(1+0.)
o. e n J

J

Since the last expression is independent of the particular R, and B

considered, we have that

-U
2
/(1+O.)

o. e n J
J

(3.9) "[ ]2.k
n •. n

-:.--." log
v'i<' n .

n

n
n t .-p
k l.. J'.

n j=R,'
n .,

I I
II

For the three cases p < 1,' P = 1, and p > 1 J the last sum is bounded by

a constant times n1-P, log n, and R,' I-p respectively. Thus, since
n

p > max(38/2 , 2(2 - 1/8)), the right-hand side of (3.9) clearly tends to zero

"-

when p :S 1. For p > 1 it is readily seen that R,' may be redefined (by
n

increasing if necessary, keeping R,'=0(1"i<), R,':::v'i<) so that (3.9)n n n n

still tends to zero. Hence (3.5) follows.

The proof that nk-~ cx
2

(n, R,') -+ 0" as .. n -+ co for the above choice of
n n

t' is only notationally more complicated, and together with (3.5) this
n

shows that

i
"'-""-. -, : ~

:1
I
I

I
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n a(n,.l1.n') -+ 0 as n -+ 00 •

11<
n

It is now easy to see in the same way that, for any sequence .l1.n with

.l1.' s:.l1. s; 11< , we haven n n

and this proves the lenuna. 0

It now follows at once that A(u ), and hence the results of Theoremsn .

2.4 and 2.5, hold for stationary normal sequences which satisfy the above

conditions. To avoid repetition we only state an analog of Theorem 2.5.

Theorem 3.3. SUppose that· {X } is a stationa.r>y normaZ sequence and {k }n n

an intermediate mnk sequence 8UCh that

and suppose that in addition k /(log n)2/P -+ co. Then
n

P(an (X~n) - bn) s: x) -+ \P(x) as n -+ 00

n

for aU reaZ x" 1J)here a and b are defined by \PCb) = 1 - k /nandn n n n

a = n\P' (b )/Ik .n n n

Finally, it should be remarked that the covariance condition of the

theorem does not seem to be optimal. Perhaps even a condition like
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kn n ~ I In log k L r. -+ 0 ,
n i=l 1

or, translated into terms of (3.1), p > 8, may be sufficient. In fact,

we have been able to show that if Xn can be written as a moving average
00

of independent normal random variab1es X = I c. Y ., with cn = O(n-p)n . ~ 1 n-11=-- .
for some p > max(e,~), then the conclusion of Theorem 3.3 holds. In

particular, this provides a large class of examples of processes with

such that Pea (Xk -b )~x) -+ <p(x) for any p > max(e,~).n n
n

.., -----_..__ .._ \
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