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: Abstract

Let X,,X be a sequence of random varlables and write Xﬁn) for

1272
the k0 largest among Xl,Xz,...,ch I£ {k } is a sequence of

integers such that k »o k /n-+0 the sequence {X( )} 1s referred to
n

as the sequence of intermediate order statistics corresponding to the

intermediate rank sequence f{k _}.

The possible limiting distributions for Xén) have been characterized
n v
{under mild restrictions) by various authors when the random variables

Xl,X2

consider the case when the {Xn} form a stationary sequence and obtain a

are independent and identically distributed. In this paper we

natural dependence restriction under which the "classical" limits still
apply.

It is shown in particular that the general dependence restriction
appIies to normal sequences when the covariance sequence {rn} converges
- p .

to zero as fagt as an appropriate power n as n > o,
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1. Introduction.

The problem of finding the asymptotic distribution of the maximum
term from a stationary dependent sequence of random variables'(r.v;'s)
" has been extensively investigated in the literature. - Of particular
interest are the cases in which the concept of '"approximate independence"
is formulated mathematically in terms of conditions such as "'strong

mixing" or, for normal sequences, conditions on the rate of decay of the

covariances. Loynes (1965) showed that under strong mixing and an =~~~

additional restriction, the (suitably normalized) maximum of a dependent

sequence has the same limiting distribution as the maximum of a corresponding

independent and identically distributed (i.i.d.) sequence, provided the
latter sequence has a limiting distribution. This limiting distribution
is thus necessarily one of the three classical types of extreme value
limit laws. For stationary normal sequences Berman (1964) found

covariance conditions under which the distribution of the maximum

converges to the double-exponential limit. law, which aiiéé§"iﬁ”fﬂémffifd.
normal case.  More recently, Leadbetter (1974) obtained the general
result of Loynes under a weaker "distributional mixing" assumption and
showed that with Berman's covariance conditions the normal case may be
placed into the general framework. Additionally, Leadbetter considered
the related high-levél exceedance problem for stationary sequences,
leading to corresponding limiting results for extreme order statistics.
OQur objective in this paper is to obtain analogous results for
so-called intermediate order statistics. Specifically, for a given
sequence of r.v.'s {Xn}, let Xﬁn) denote the kth largest of Xl,...,X R

n

and let {kn} be integers such that 1 <k <n for each n. Then if



(n)

kn + © but kn/n -+ 0, {Xk } is called a sequence of <intermediate order
n

statistice and {kn} an intermediate rank sequence. Wu (1966) found .

that, subject to the mild restriction that kn increase monotonically,
when the {Xn} are i.i.d. the only possible nondegenerate limit laws for

the normalized sequence {an(xﬁn)- bn)} are normal and lognormal. In

n
Section 2 we will establish general conditions under which the intermediate
order statistic Xén) from a stationary dependent sequence {Xn} has the

n
same asymptotic distribution as it would if the {Xn} were i.i.d. These

conditions parallel those used to obtain the corrésponding result in the
extreme order statistic problem, a primary difference being that certain
more rapid 'mixing" rates have to be assumed. Using our procedure it is
convenient to deal directly with an appropriate level exceedance problem
and to regard that of asymptotic distributions as a speciaiization. In

Section 3 we show that under a certain decay of the covariance function

our general conditions are satisfied by a stationary normal sequence

'{Xn}; in this instance it is known (see Cheng (1965)) that the asymptotic

(n)

distribution of Xk for an independent sequence is itself normal and
n
hence is also normal in the dependent situation considered.

2, The general stationary case.

First suppose that {Xn} is an i.i.d. sequence of r.v.'s with
marginal distribution function (d.f.) F(x) = P(X;sx) and that {kn},is
an intermediate rank sequence. Let {un} be real numbers, write

n
S = Z In i where I is the indicator of the event {Xif> un}’ i.e.
- 3

n . s

I

1 .
1 if X, >u_ and I_ . = 0 otherwise, so that S_ 1is the number
i n n,i n

3

I .
n,i

of exceedances of the level u, by Xl,...,X ; and let ® be the standard

n



normal distribution function. It follows from the Berry-Esseen theorem

and the basic equality

P(Xén)Sun) = P(S_<k )

n
that
(2.1) Pax™Msu ) > o) as n+ o
n
if and only if
(2.2) 1- F(u) =.kn/n - Wk /n + b(Ji;7n)

(n) _
Thus, there are constants an,bn (an > 0) such that an(xkn bn) has a

limiting distribution if and only if there exists a function u(x) such

that, wrltlngrun(x) = x{hn + bn’

(2.3) 1 - Flu (x)) = k /n - u(x)/k /n + o(Vk_/n)

for all continuity points of &(u(x)), and furthermore if (2.3) holds then

P(an(Xén)—bn)Sx)-+ S(u(x)) as n > ®
n

for all continuity points of @(u(x)). Wu (1966) proved that if {kn} is

nondecreasing then the only possibilities for u(x) are

-a log |x]| , x< 0 (a>0)

(1) u(x)

= <
u(x) = =, x20
(ii) u(x) = -, x <0

u(x) = o log x , x>0 (a>0)



(iii) u{x) = x
(iv) functibns obtained by replacing x by ax+b (a > 0) in

(i), (ii), or (iii).

It may be noted that if for example F is continuous then for any real u
it is possible to choose levels u satisfying (2.2), and hence such that
{2.1) holds, but of course these levels may not necessarily constitute a
family un(x) = x/an + bn which satisfies (2.3) for some fum:tion u(x).
Our approach to proving that, say, (2.1) holds for a stationary
d_ependent sequence {Xn} is to assume that (2.2) holds and then to use a

dependent central limit theorem to prove that

P(Sn<’-kn) + ®(u) as n >

and thus that (2.1) holds. Since (2.1) and (2.2) are equivalent for
independent sequences, the assumption (2.2) can alternatively be stated

th

A A
as P(Xlsn)s un) + &(u) where Xlgn) is the kn order statistic in the
n

: oA A
"associated independent sequence' Xl’ X2,..., that is, an i.i.d. sequence
which has the same marginal d.f. F as each Xn. For easy reference we
start by stating two known results from dependent central limit theory.

The- first one is Lemma 5.2 of Dvoretgky (1972), while the second one

follows for eﬁcample from Theorem 2.3 of Durrett and Resnick (1978) .

Lemma 2.1. Let X be an r.v. on (Q,A,P), write o(X) for the o-field

generated by X, let B be a sub-o-field of A and define
o = sup{|P(AB) - P(A)P(B)|: Aeo(X), BeB} .

If |X| <1 then



E|E(X|B) - E(X)| < 4a .

N
Lemma 2.2. For n =1 let {X .}.»

' . .
n,ili=1 be r.v.'s on the probability space

(2,B,P) and let {Cn i} be sub-o-fielde of B such that X i8

>

Cn .~-measurable. Suppose further that Cn i © C_ . 1 and that

F) n’l'l"

E(X

n,iﬂlcn,i) =0 for 1si<N . If lxn,il < e

n,lsiSNn,for

gsome constants e, > 0, and if

N
n 2
(2.4) 52 E(X_

‘1

)+02 ag n > ®

|C

,i' 'n,i-1

for some constant o 2 0, then

P(.Z X iSx)-><I>(x/0) ag n-=> o

for all real x, where ®(x/0) s defined to be 1 for x 2 0 and 0 for

x< 0.

To be able to give conditions restricting the dependence in the

sequence {Xn} it is useful to introduce certain '"mixing coefficients."

e

Let Bn, = o(I v In,k) be the o-field generated by In,I""’In,k;

k n,1*’
define
oy (n,k) = sup{lP({Xn+isun}r1B) - p(xn+isun)p(s)|; izo, Bes{;i,;}:,
a,(n,k) = sup{]P({Xn+isun, Xn+jSun}ow) - P(X 5w, xn+j5uh)p(a)[;

1,20, |i-j|skwBeB )



and put

o(n,k) = max{al(n,k) R az(n,k)} .

}.

It is easily checked (by simply listing the events of C’(In,ni-i_ ? In,n"j))
that
45(n,k) = sup{|P(AnB) - P(A)P(BY|; A € O(T, oD L)
for some i,j20,|i-j|sk,Be Bn,'n-k

Our main dependence condition, to be called A(un), depends on the levels
u_ and involves sequences ' {Q,n},,{%i'l:} of integers which of course may be

chosen to be different for different sequences {un}.

Condition A(un) will be said to hold if

VK]
c 2
1_(; -121 IP(X1>un ? x1+i>un) - (l—F(un)) l + 0 as n+> o,

and if furthermore there exist sequences {!Ln} and {21'1} of integers

satisfying Zr'ls Zns v kn s R,I'l= o(JZ,n) s 'Q'n = ofv kn) such that
n - n — . '
e oa(n,!Ln) + 0 and = oc(n,!?,n) + 0 as n+®
n n
The mixing condition in A(un) differs from the strong mixing

condition which uses the mixing coefficient

a(n,k) = sup{|P(AB) - P(A)P(B)|; Ao (X, e} 5 Beo(Xy,.nX )Y,

Xn+1"



in that substantially fewer events are involved. However, for a strongly
mixing sequence, clearly a(n,k) 2 o(n,k') if k < k', and hence the

second part of A(un) follows if

fk—ln a(n,ﬁr'l)—* 0 as n+ o,
However this condition may be harder to check; in particular this seems
to be the case when {Xn} is normal.

To state the next lemma, which contains the major part of the proof
of (2.1) for dependent sequences, we need some further notation. We

partition the first n integers into long and short "intervals"

Jl’Ji’JZ’J"""JI:In’ with Jl’Ji"',"JNn of alternating lengths
1 3 1 1
!&n,zn,...,zn and with JNn of length r < 2n + SLn. Clearly
(2.5) Nn ~ n/ILn .
, i i
. - s y = s ),
Further, define Cn,i U(In,j'-" j ek:1 Jk) and cn,i g(In,J Jek:1 Jk)
and put
Xn,i - Z {In,j - E(In,jlc',n,i-l)}/ *
jed.
i
and
] - - '
Xi ngv{In,j E(T, 51Ch,5-003/Y%,
i



Lemma 2.3. Suppose that the stationary sequence {Xn} satisfies A(u ).

Then

Nn -
(2.6) iZZ j’?i}"ilmm a, k) - B(T, B I|/k » 0
and

N, L,
@n 1 jele (1, 510, 5 ) - BT, PWYES + 0

ag n > o, and (2.6) and (2.7) hold aleo when Ji i8 replaced by Ji and

C . by C]'1 i If in addition (2.2) holds then

n,i
Na L
Z E(xn 1I n,i- Tl
(2.8)
Nn : 5 Ll
Yy OEX“.jcr . ) +o0
122 n,i" n;i-1

as n > o«

Proof. Since E(In,j) =1 - F(un) and E(I X

= >
n,j In,k) P(Xj>un s X un)

it follows by stationarity that

N
n
i§2 j,kzeJ.lE(I“’j In,i) - Uy )BT, 01/%,
j=k -
[Vk ] ,
sNL& T [POpu s, X e>u) - (=R )T/
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which tends to zero as n + « by A(un) since ann/kn-'* n/kn. This
proves (2.6).

Next by Lemma 2.1 and stationarity we have for j € Ji that

Il < 4oc1(n,9vr'1) < 4&_(n,2;1) s

ElE(In’jICn,i_l) - EB(I, 4

and hence by A(un) that

N

122 J'EZJ. EIE(L, 51C, 5.0) - By PI/VE < N0 mln 27K -
1
< Kn&_(n,lx'l)//kn

+ 0 as n=» o,

and (2.7) follows.

To prove the first part of (2.8) we note that

2 N
(2.9 B 4lC 5 )= L B ST lC ) - BOE IG5 )

j,keJ1

’ E(In,klcn,i-l)/kn} *
Reasoning as above, we have

N
. n .
2.10 E|B(I_ .1 c_ . - E(I_ .1 K
( ) izz j,kXe Ji I (n,J n,kl n,1-1) (n,J n,k)V i
< 16N_22 a(n,%")/k
- nn’ n’" ™n

-0 as n» >,
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and furthermore, since |I_ .| s 1,

n,j

BIE(T, 1€, B, 4l 5 p) - B, YIEA, 9]

ENECT, 51C 500 - B, IECL, 41 5 )
* E(In,j){E(In,len,i-l) - E(In,k)}l

< BIE(T, 51C 5 ) - B(L 01+ BIEQ, L€, 5 ) - B, Pl

n,i-

IA

8oy (n,20)

and thus it follows similarly that

21y ] I EleCy Slep B e o p - By OB, bk
+0 as n+ oo,

Further, by (2.6), (2.5), and (2.2),

e e

n
iZZ j,g?.J,{E(In’j LT E(In’j)E(In,k)}/kn
1
N

- 11 @, - By
i=2 jEJi n,j n,j n

N

n

+ ) @I {EQ
i=2 j,keJ,
j=k *

n,j In,k) - E(In,j)E(In,k)}/kn

(N D2 {A-F(u) = (1-F(u)) ¥k, + o()

+>1 as n=+>® ,

and together with (2.9) - (2.11) this proves (2.8).
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Finally, the proofs of the remaining assertions of the lemma are

similar and are left to the reader. O

Our main results now follow easily.

Theorem 2.4. Let {Xn} be a stationary sequence of r.v.'s, let {k } be
an intermediate rank sequence, and let S, be the number of exceedances

of u by X <X o If (2.2) and A(u) hold then

1’

P((Sn—E(Sn))//R_l; <£x)+ O(x) a8 n >
for all real x, and therefore

P(Xlgn)Sun) = P(s_<k) > O(u) as n>w.
n

2 we have that

Proof. Since |I_ ., - E(In’jIC

n,j n,i-l)I =
|)(n i] < 2!2,n/;/kn + 0, and it follows at once from (2.8) and the

definition of {Xn i} that the conditions of Lemma 2.2 are satisfied

’

(with o2 = 1), and hence that

N
n d
} X .+% as n>o,
j=2 Mt
Similarly it follows that
N
n
} X! .>0 as n>o,
i=1

Together with Lemma 2.3 this implies that
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ST+ L oy B O
Nn :
+ iZz J_GZJi‘ e, slc, 5 ) - E(, WK
Ny |
+ iZZ jggi{E(In,jlcﬁsi-l) - E(In’j)}//ig
d

-0 as n > o«

and thus proves the first part of the theorem.

Next by (2.2)
(- B /YE, = (e-n(l- F(u /YR
+u as n->o,
and, writing

P(S,<k) = P((S~E(S /YK, < (k -E(S/VE]) ,

the last part of the theorem follows at once since & is continuous. 0

Using this result we obtain the following theorem, giving sufficient
conditions for Xﬁn) to have an asymptotic distribution, which is the

n
same as if the Xn‘s were i.i.d.

Theorem 2.5. Let’{xn} be stationary and euppose that for gsome constants

a>0,>b
n n

P(an(Qﬁz)-bn)5x)-+ d(u(x)) as n~» =
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A
for all continuity pointa x of u where {Xlgn)} i8 the independent

n
sequence asgociated with {Xn}. If A(un) 18 satigfied for u, = x/an + bn

for all continuity points x for which u(x) 1s finite, then for such x

P(an(Xlgz)-anSX) + ®(u(x)) as n > % .

This then holds for all x if u <8 continmuous (as is the case when for

example kn inereases monotonically).

3. The normal case.

In this section the general results obtained above are applied to

normal sequences. Let {Xn} be a stationary normal sequence which for

convenience is assumed to be standardized to have zero means and unit

variances. We assume that its covariance function rn = E)(l)(1 +n

satisfies
(3.1) r = 0(n ")

for some constant p > 0 to be specified later. Write

§=sup|r_|, 6 =suplr | .
n21 n’ n mn2n n

It is easily seen that since T, + 0 we must have ¢ < 1, and that (3.1)
implies Gn = 0(n"?). Further, let {kn} be an intermediate rank sequence

and define 0 = e({kn}) by

X el
8 = inf{o! 3k =0(n )} .
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Clearly 0 <6 <1 and kn = O(ne+€) for all € > 0.
Now, for x real, suppose that u, satisfies (2.2) (with u replaced

by x), i.e. suppose that

(3.2) 1- @(un) = kn/n - xf_lq/n + o(fl'c_;/n)

By making a first order expansion of & around the point bn, it is

easily seen that one such u_ is u_ = x/a_ + b_ with
n n n n

n=<I>‘1(1-1<n/n) , 8, =n0' (b )//E_ .

- ' ' ' Kt s :
Somewhat more generally, u x/a,n + bn for an,bn satisfying |
a;ll al~>1, al_ll(bl'l-bn)—»o also satisfies (3.2). We require the following

two useful technical results. First, for {un} satisfying (3.2) we have

L -1 -ul/2
k/m~1-0u)~(@2n Tue o

and taking logarithms gives u o~ v 2 log n7kn so that

2
-u
(3.3) e M~ 4'rr(kn/n)2 log n/kn .

In the folloWing two lemmas we find conditions on p which ensure

that A(un) is satisfied.

Lemma 3.1. Suppose that 6 < 1 and that {rn} satisfies (3.1) for some

0 >0, Then
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V)

L 2
K 151 PX>u, X, >u) - (1-0w ) >0 as n >,

Proof. As a special case of a result used by Berman (1964) and others,

we have that

k

, _
2 \ "un/(l'.'lri')
[P(X>u , X >u) - (1-8(w )| 5 K|r, fe
for some constant K (depending only on § but whose value may change from

line to line below). Hence

vk 1]
-].?_' Z IPCX >u ’ X .>u[\) - (l_gcu))ZI
n  j=1 1" %0 ? T14i7 T AL
n vk 1 -uﬁ/(h}ri[)
sK g L Ixle
n el

and we estimate the latter sum by splitting it into two parts: for

\

1<jsy and for v <j< [/k 1, where y = [(n/kn)e} with

0 <& < (1-8)/(1+8). By (3.3) T s
- 2 4 2/(1"'6)
n un/(1+|ril) n {kn} .
Ky i£1 Ixyle < KETF' (log E;)Y

+ 0 as n=> o

by the choice of Y.
Since 6 <1 and 8§, =0 @™ by the a§‘§méﬁ”6ﬁf"'*ff;}ffw§ﬁf'* e

have that 6Yur21 + 0 as u ~+ o, and hence (3.3) gives, for i » Y,
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2 2, 2 2
/el /S e 8 /(1)

e e

knz n
SK—n" lOgr.

n

€

Thus, (defining the sum to be zero for vy 2 wkn]

n Ul el ko, Pl
o L gl S K— log &— I Ir;l
n 1='Y+1 n i='y+1
k_ . vk ] &
< K Y Tog 'S Z i .
n i=y+l i

For the three separate cases p <1, p =1, and p > 1, the last sum is
bounded by a constant multiple of kél'p)/z, log /TI; , and 1 respectively,
Therefore in any case the expression on the Vright—hand side 'tends to zero

since p > 6, thus concluding the proof of the lemma, ' O

To establish the latter part of A(un)' we shall further extend an =
Aimportant method, due to Slepian, Berman, and Cramér, from the extreme
value theory of normal processes. In addition to conditions on p, we
shall for convenience assume that kn does not increase too slowly, or

more precisely that

(3.4) kn/(log n)Z/p -~ ® as n> o,
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Lemma 3.2. Suppoee that {rn} satisfies (3.1) and (3.4) with

p > max(36/2, 2(2 - 1/0)) and that {un} satisfies (3.2). Then there

- extst sequences {Rn} and {Rﬁ}whzck.;atwfythe requ*wemem’:sof;\(un)

Proof. We first show that there exists a sequence {21} with 2! < vk
and Sl,r'l = o/ En) such that

(3.5) ozl(n,JLr'l) + 0 as n> o,

.
Vk_
n

First, by (3.4), a sequence {2,1'1} can be chosen so that

,Qr'l=o(;/kn) R ,Q,I'ls|/kn but such that ,Qr'l 2 (log n)l/p . We shall impose a

~ slight Further restriction on 2! later, but for the moment just assume

these properties. Then since 6n < knP by (3.1),

' urz1 62, < K(log n)(log n)-1 = K, and hence by (3.3), for 'j > R,I'l,
n

2, 2 2
-un/(1+6j) - 'un'."un Gj /(1+6-)

(3.6) e e < 1((kn/n)2 log n/kn .

2

Now let B ¢ o(I seres 1 ) and £ 2 0 be fixed, Then B is a
n,l1 n,n-z;l

n-2°'

s s s . n .
. disjoint union of sets of the form n {In s xi}, where each x; 1is
i=1 ?

zero or one; and hence for any j, 1 £ j <=n - 'Q’r'l’

B =B {I .=o}uB'1{1n.=1}

0"'n,j 2]

where B, and B, are sets of the same general form as B, except that the

0 1
jth factor in the intersections are missing. It is evident that
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B={(xl,...,xn_%)es}, Bi={(X1,..., xj_1 , xj+1,..., X“"Lr'l)eBi} s

_ n—SLI'1 — n'2'1'1'1
for some sets BeR R Bo,BleR

Let R, be the covariance matrix of the vector (Xl,. ces Xn'g’;l s Xn+2,)’

1
let R0 be the covariance matrix it would have if (Xl”"’xn-z') and
n
Xn+5L were independent, and define Rh = th + (l-h)Ro. Without loss of

generality it may be assumed that Rl and hence Rh is positive definite,

and writing

where X = (X;,...>X oy ) and f, is the density function of a zerosmean’
n

normal vector with covariance matrix Rh’ we have that

(3.7) IP({Xm_SLsun}nB) - p(xmzsun)p(s)l = |F(1) - F(0)|

1
< oy 1e

Proceeding as in Leadbetter, Lindgren, and Rootzén (1978, pp. 46-47),

we obtain
A S
(3.8) F'(h) = ) Pragoi Looe G o
j=1 XeB Xag =% 3 n+f

A X eBlt={3*¢¥® X* ¢ B
s above, {X ¢ B} = {X* ¢ BO}{xj < un} u {X* ¢ Bl}{xj > un} where

X* = (Xl, cees X > Xp g ), and performing the integrations
n

j-1° xj+1,..

over x. and x ives
j n+f &
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u u 2
n n o £
_f*_"j J I X, 9x__o N f*__f fh(xj=xn+2=un)
X*e 8, Xy=om X = X*eB
SR EIP AL AR L

where fh(xj = xn+£=un) is the function of X* which is obtained by

=u_ in f . The last integral is easily seen to be

putting x;=u , X, o=u A
) -
‘un/(1+lrn+2,-j B

bounded by Ke , with K depending only on . Next, making
the change of variables Yi® X i#j, yJ. = -xi and writing

T* = s
y (yl,...,yj_1 s yj+l""’ n_%), we have

® Yn 32 ¢ Y Uy 3% £
[-of e R | [
-—*§ = = 00 ij ) *E‘ﬁ = - e Byj Tn+8
x*eBy xj—un X 4™ " y 1 YJ- Yn+ld
= 'II_ gh(yj="un > Yneg, =)
V*eB
1
where g, 1is defined from (xl""’xj-]‘:,’ —Xj,Xj+1,..., Xn_%, Xn+2,) in the

1+-l-rn+»2-j

ssme way as fh is defined from (Xl""’xn-zl'l s xn-HL) . Agagx/,( the
modulus of the latter integral is seen to be bounded by Ke n

and it follows that

2
n 7 £ -us/(1+]|r b
n
l‘[...'.{ / ijaxg | < Ke
xeB I

n+i-j

Inserting this into (3.7) and (3.8) gives

D,
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n-2!
n

| wZ/elr D)
|PUX o su }nB) - P(an_'_IQSun)P(B)[ < K jzl {rn+2_j|e n+f-j
: 2
~u’/(1+8,
< K ? e un/( +63) .
=y

Since the last expression is independent of the particular £ and B

considered, we have that

n -ui/(1+6j)
L
o, (n,2!) s K .Z 6j e

Thus, by again using r_= O(n_p)“éﬁd”fgiéj;“ﬁéwﬁéﬁe

: 2

[k n
3.9 BELIY (n,2') < K n { n}_ 1o n =P .
(3.9) Jk, 1 i Am) %y JEQ. !

For the three cases p <1, p=1, and p > 1, the last Sum is bounded by

a constant times nl-p, log n, and R'I'D respectively., Thus, since

p > max(36/2 2(2 - 1/6)), the rlght-hand side of (3 9) clearly tends to zero

when p <1, For p > 1 it is readlly seen that 2' mnay be redeflned (by

increasing if necessary, keeping 2'=o(¢k ), 2&5/ n) so that (3.9)

still tends to zero. Hence (3 5) follows.

="

The proof that nk o, (n L ) + 0 as n>o® fbr the above choice of
25 is only notationally more complicated, and together with (3.5) this

shows that

PRI
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.2.. e ' -5 ->
e oc(n,!?,n) 0 as n > »,
n
It is now easy to see in the same way that, for any sequence Q’n with

2 < R < vk_ , we have
n n n

E(n,!l,n) >0 as n> o,

N
vk
n
and this proves the lemma. _ O

It now follows at once that A(un), and hence the results of Théorem_s
2.4 and 2.5, hold for stationary normal sequences which satisfy the above

conditions. To avoid repetition we only state an analog of Theorem 2.5.

Theorem 3.3. Suppose that {X_ } is a stationary mormal sequence and {k_}

an intermediate rank sequence such that

Th = 0(n_p) s ‘some o > max(368/2 ‘;“2‘(2";—1735-r:~'-~w~

/p

and suppose that in addition k /(log n)2 +w, Then

P(an(xlgn)-bn)SX) + 0(x) as n+®
n

for all real x, where a and bn are defined by @(bn) =1 - kn/n and
a_ = n@'(bn)/fiz.

n

Finally, it should be remarked that the covariance condition of the

theorem does not seem to be optimal. Perhaps even a condition like
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or, translated into terms of (3.1), p > 6, may be sufficient. In fact,

we have-been able to show that if Xn. can be written as a moving average
0

of independent normal random variables Xn = )} c.Y_ ., with c, = O(n-p)

t e o0 1 n-1

for some p > max(9,%), then the conclusion of Theorem 3.3 holds. In

particular, this provides a large class of examples of processes with
r = on™® ,

such that P(an(xk -bn)SX) -+ &(x) for any o > max(eg%).
: n
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