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ABSTRACT

In the problem of nonparametric density estimation, kernel estimators

with cross-validated bandwidths are considered. An example is given to show

that, even in the case where both density function and kernel have compact

support, ordinary cross-validation is sub-optimal. A "pre-smoothed" modi

fication of the cross-validated technique is proposed. By techniques

similar to those of Hall (Biometrika 69 (1982) 383-390) it is shown that

this density estimator achieves the well-known asymptotically optimal rate of

convergence. This estimator does not make use of the precise amount of

4It smoothness that is assumed on the density, but it is required that the

density be not too smooth.
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1. INTRODUCTION

Consider the problem of estimating a density function, f, using a

sample Xl, ... ,Xn from f. The usual kernel estimator is defined as follows.

Given a IIkernel-function ll
, K (with !K(x)dx = 1), and a IIbandwidth ll

, h € ffi,

let
" 1 n x-Xi
f-(x,h) = nh .L K(--h-- ) .
n 1 =1

There is a large literature concerning this estimator as may be seen

from the survey by Wertz (1978). Most results make very precise assumptions

about the amount of smoothness of f. Then h is chosen to depend on n in

such a way that some error criterion (such as mean square error) is

asymptotically minimized. It has been shown, see Farrell (1972) .or Stone

(1980) that this means of choosing the bandwidth gives an estimator which is

asymptotically optimal, over the class of all estimators (not just kernel

estimators), in the sense of rate of convergence.

Unfortunately, the particular choice of h(n) depends heavily on the

precise amount of "smoothness" of f that is assumed. Thus, this means of

choosing h is virtually useless to the practitioner because for an unknown f

it is difficult to make accurate assumptions on the smoothness of f. For

this reason there has been a considerable search for techniques which use the

data to specify h.

A popular technique of this type is the cross-validated or pseudo-maxi

mum likelihood method introduced by Habbema, Hermans, and van den Broeck

(l974). To employ this method, first for j=l, ... ,n, form the "leave one out"

kernel estimator,
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A 1 n x-Xi
fnj(x,h) = (n-l)h i~l K(-h- )

ifj

Next, choose h to maximize the "es timated likelihood"

A n A

L(h) = ° 7T f nJo
( X

J
" , h) •

J=l

In a recent paper by Chow, Geman, and Wu (1982), an example is given

which shows that if f is not compactly supported, then h diverges to 00 (in

probability) from which it follows that fn(x,h) is not even a consistent

estimator of f. So they assume that f is compactly supported and, with

considerable effort, establish consistency.

Despite this promising result, the cross-validated estimator can still

be very poorly behaved. In section 2 an example is given which shows that

the cross-validated h can be strongly biased by observations 'Xi for which

~ f(Xi ) is close to O. A reasonable way to eliminate this effect is to find

an interval, [a,b], on which f is known to be bounded above O. The assump

tion of the existence of such an [a,b] seems easy to accept. Indeed, most

practitioners should have no trouble finding reasonable candidates. Next,

let

(1.1)

redefine the estimated likelihood,

L(h) = 7T fnJo(Xo,h),
jEA J

and take h to maximize L(h).

This estimator has been studied by Hall (1982a). His results show that,

while the pathologies of section 2 cause no problems, the cross-validated

estimator still behaves suboptimally with respect to the rate of convergence

of mean square error. It is surprising to note that the dominant term in his
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calculations depends only on the behavior of f at the endpoints of [a,b].

This effect will be discussed heuristically in Remark 6.4.

In this paper (see section 3) a modification of cross-validation is

proposed which eliminates this endpoint effect by "pre-smoothing" the set A.

In section 5 it is seen that, under fairly mild conditions on f, this

technique gives a density estimator which has excellent asymptotic properties.

In section 4, a means of measuring the smoothness of a function is given.

This is formulated differently from the usual Lipschitz conditions on

der;'vatives or tail conditions on Fourier transforms, but is seen to be much

more natural for the density estimation problem. It also simplifies the

formulation of the theorems of section 5.

Section 6 contains some remarks on the strengths and weaknesses of

pre-smoothed cross-validation. Section 7 contains the proof of theorem 2.

~ Section 8 contains an outline of the proof of theorem 1.

2. PATHOLOGIES IN ORDINARY CROSS-VALIDATION

To see why Chow, Geman, and Wu (1982) had to work so hard for their

result, consider the following example. Suppose the density f has cumulative

distribution function F so that, for some E > 0,

1

F(x) = eX

Such an f could easily be constructed to be infinitely differentiable. Let

X(l) and X(2) denote the first two order statistics of Xl, ... ,Xn. It can be

shown by straight-forward computations that, for any a > 0,
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But for K comparctly supported, C(h) = 0 unless h ~ c(X(2)- X(l)) for some

constant c. Thus, the cross-validated h must converge to 0 slower than any

algebraic rate.

By the familiar variance and bias decomposition (see (4.7) or Rosenblatt

(1971)) the mean square error may be written:

where p represents the amount of smoothness that is assumed on f. Hence, it

is seen that cross-validation behaves quite PQorly in the me-an square sense.

Analogous, though not so dramatic examples can be constructed by ~aking,

for k large,

F(x) = xk

These examples indicate that, even when f is very smooth and compactly

supported, cross-validated estimators, as proposed by Habbema, Hermans,

and van den Broek (1974), can be drastically affected by observations where

f is close to O.

3. PRE-SMOOTHED CROSS-VALIDATION

One drawback to cross-validation as proposed by Habbema, Hermans, and

van den Broek (1974), is that it can be computationally very expensive. Note

that, for each h, computation of L(h) involves computing n different density

estimators. To avoid this difficulty, Schuster and Gregory (1978) proposed

the following device.

Assume the sample size is even and split the sample (randomly) into two

equal subsets, which will be denoted here (after a change of indices) by

~ Xl"'" Xn and Yl, ... ,Yn. Then form two kernel estimators,
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n x-Yo
fV (x,h) = _1 L K(----' )
n nh i=l h

Now take hx and hv to maximize, respectively, the estimated likelihoods,

As the final estimator, take

(3.1)

It is easily seen that similar theorems also apply to the f of
n

is also apparent from the theorems that, at least asymptotically,

Intuitively speaking, it seems there should be some loss of efficiency

compared to the "1 eave one out" type of cross-validation. However, in many

cases, this consideration is outweighed by the computational tractability

of this "subset" cross-validation. This type of cross-validation is used

here because the proofs are technically simpler and thus the ideas involved

~ are more readily apparent.

The optimality theorems of section 5 will be formulated in terms of
AX A
fn and hX'

(3.1). It

"subset" cross-validation is competitive with "1 eave one out" cross-validation.

To simplify the notation, for the rest of this paper, redefine

A 1 n x-Xi
fn(x,h) = nh.L K(--h--)'

, =1

Also redefine, for a randomly chosen (as in (1.1) for example) subset Ac{l, ... ,n},

A A

L(h) = 'IT f (v.,h),
j EA n J

and let h maximize L(h). Now a means of choosing the set A will be given which

will eliminate the endpoint effect observed by Hall (1982a).
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As in Hall (1982a) it is assumed that f is bounded above 0 on an

interval [a,b]. Those values of j for which Yj is too near the endpoints of

[a,b] are removed from A in a "smooth fashion" by the following device.

Construct a function q(x) so that:

(3.2) q(x) is supported on [a,b],

(3.3) q(x) is infinitely differentiable on [a,b],

(3.4) o ~ q(x) ~ 1,

(3.5) q(x) > 0 for some x.

For j = l, ... ,n, given the value of Yj , randomly put j € A with

probability q(Yj ). Assume this is done independently for each j and is also

independent of Xl "",Xn and Yl , ... ,Yj - l , Yj+l, ... ,Yn. Note that the

cross-validafion scheme orHaTl (l982a) is of this type where q(x) is the

~ indicator function of [a,b].

It will be convenient to define

p = P[j€A] = !q(y)f(y)dy

Conditional on the event {j€A}, Yj has density

g(y)f(y)
p

4. A MEASURE OF SMOOTHNESS

Before giving the measure of smoothness, more restrictions will be placed

on the kernel K. Let k denote a large, positive, even integer which will

remain fixed throughout this paper. It is assumed that K is a real valued

function for which
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(4.1) JK{x)dx = 1,

(4.2) JxiK{x)dx = 0 for i = l, .... k-l,

(4.3) JxkK{x)dx = Bk! > 0,

(4.4) K is symmetric about 0,

(4.5) K is bounded and compactly supported,

(4.6) Kis differentiable and K, K' have bounded variation.

The first two assumptions are crucial to the proper behavior of kernel

estimators. The rest have been included for technical convenience.

Let w{x) denote a nonnegative "weight function". A common means of

measuring the error of the estimator ~n (in estimating f) is the (weighted)

Mean Integrated Square Error (MISE),

J
A 2

E (fn{x)-f{x)) w{x)dx.

~ In the case of kernel estimation, this quantity is usually decomposed into

variance and bias terms as follows (assuming f uniformly continuous)
1 n X.-y2

var ~n{y,h) = -- 'i' (EK{_l_)
n2h2 i~l h

X.-y 2
[EK{+)] ) =

1 J 2 1 2= nh K{u) f{y+hu)du - n[JK{u)f{y+hu)du] =

1 2 1= nh f{y)JK{u) du + O{nh) .

Similarly,

! Efn{y,h) = JK{u)f{y+hu)du.

Thus,
A 2 1 2 1 2E[fn{y,h)-f{y)] = nh f{y)JK{u) du + o{nh) + [JK{u)f{y+hu)du-f{y)] ,
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from which it follows that,

(4.7) E!(fn(y,h)-f(y))2 w(y)dy = ~!f(Y)W(Y)dY)(!K(u)2dU) + o(~h)

+ ![!K(u)f(y+hu)du - f(y)]2 w(y)dy.

For the bias term, adopt the notation

Sf(h) = ![!K(u)(f(x+hu)-f(x))du]2 w(x)dx.

Note that if f has a bounded p-th derivative (p k) and w is compactly

supported, then by (4.1), (4.2), and Taylor's theorem, as h + 0,

sf(h) = 0p(_h2P ).

Thus the rate of convergence of sf(h) to 0 provides an ilL2_type" m~asure of

how much of a Taylor's expansion f has (i.e., how smooth f is). This measure

4It is very natural for density estimation because it correctly takes into account

difficulties about more smoothness at one point than at another.

5. OPTIMALITY THEOREM§

It is assumed that all quantities are defined as above. In particular,

q and K are assumed to satisfy (3.2)-(3.5) and (4.1)-(4.6) respectively. In

addition, the following is assumed about the underlying density, f,

(5.1) f is bounded,

(5.2) f is bounded above 0 on [a,b],

(5.3) f is differentiable and f, f' are of bounded variation,

(5.4) lim inf h-kSf(h) = 00.

h + 0 ,

Now the main result of this paper can be stated.

Theorem 1: Choosing h to maximize L(h) is the same as choosing h to

minimize
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Hence t if MISE with weight function w(x) = q(x)/f(x) is accepted as an

error criterion t then the pre-smoothed cross-validated nyields a density

estimator which not only attains the optimal rate of convergence in the

exponent sense t but the coefficient is also asymptotically optimal in the

sense of minimizing MISE for this particular kernel estimator. Even if the

admittedly artificial choice of w(x) = q(x)/f(x) is not accepted the estimator

will still have optimal exponent of convergence for a wide class of weight

functions. It should be noted that this estimator makes no use of prior

knowledge of the precise amount of smoothness of f.

Assumptions (5.3) and (5.4) seem quite strong. To see how much can be

said in their absence t the following is presented as the first step in the

4It proof of theorem 1.

Theorem 2: Under assumptions (5.1) and (5.2)t choosing h to maximize

L(h) is the same as choosing h to minimize t

(5.5)

Note that if the first term dominates the other terms, then the

pre-smoothed cross-validated choice of h is intuitively very attractive.

Assumptions (5.3) and (5.4) are sufficient conditions for this dominance.
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6. REMARKS

Remark 6.1: The most well-taken objection against pre-smoothed

cross-validated density estimation is the very restrictive assumption (5.4).

This says, somewhat paradoxically, that f cannot be too smooth. However,

an inspection of the proof of theorem 1 shows that the first term in (5.5) may

not be dominant unless some such assumption is made.

Of course, the class of fls that satisfy the assumption can be made

larger by taking k larger and larger, but this device requires using a

kernel function, K, which seems more and more artificial. Also assumption (5.4)

may be difficult for the practitioner to accept. Still this does not

preclude pre-smoothed cross-validation from having small sample properties

that are superior to other types of cross-validation.

Remark 6.2: The small sample properties of the estimator presented in

this paper could be improved by using the 1I1 eave one out ll method of

cross-validation. In view of the results of Hall (1982a,b) no trouble should

be encountered in proving 'theorems and 2 for a pre-smoothed version of 1I1 eave

one out ll cross-validation.

Remark 6.3: From theorem 2, it can be seen that if assumption (5.4) is

violated, then the third term of (5.5) will be dominant. Thus the pre-smoothed

cross-validated h could be IIfar too small II or IIfar too large ll depending on the

sign of the third term.

This difficulty can be eased somewhat by installing the following artifi

cial II safety net. 1I Find a density g, which is supported on [a,b], such that

lim inf h-k Sg(h) = 00 •

h + 0

By suitably adding observations from g to the data, it may be assumed that,

for some a > 0, the data consists of a sample from (l-a)f+ag. Heuristically,
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it seems reasonable that

l~~igf h-kSaf+(l_a)g(h) = 00

Thus this mixture density may be estimated optimally and a reasonable estimate

of f may be obtained by subtraction.

Of course, for smooth f such an estimator will be suboptimal, but this is,

asymptotically, better than leaving the third term of (5.5) unbounded. It is

noted that this device of adding noise to the data set is very unappealing to

the practitioner.

Remark 6.4: Another use of theorem 2 is that some heuristics can be

given regarding the endpoint effect observed by Hall (1982a). Suppose for

€ > 0 that q(x) = 1 for x € (a+€, b-€). Then q(k)(x) is supported on

(a,a+€) and (b-€,b). Also, f~r € small, q(k)(x) is both very positive and

~ very negative on each of the two intervals of support. Thus as € tends to 0,

the behavior of the integral,

is determined by fl(a) and f'(b). Hence, these derivatives appear in the

third term of (5.5). To see how this connects with the results of Hall

(1982a), recall he treats the case € = O.

Remark 6.5: All the results presented here seemingly should be reasonably

straightforward to extend to a multivariate density as well as to estimation

of derivatives of f. In view of the results of Marron (1982) the multivariate

version can be applied to give optimal solutions to the classification problem.

It should be noted that the weight function used in this paper is almost

exactly the one that arise~ naturally in Marron (1982).
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Remark 6.6: There are several interesting problems which follow from

the results of this paper, in addition to the major difficulty mentioned in

Remark (6.1). For example, conceivably K could be chosen in some fashion

ana1agous to the optimal kernel results of Epanechnikov (1969) and Sacks and

Y1visaker (1981). Analogously, perhaps the interval [a,b] and the pre-smooth

ing function q(x) can be chosen in some optimal fashion. Means of adapting

this technique to other error criteria, such as sup norm can also be investi-

gated.

7. PROOF OF THEOREM 1

This proof is based on techniques developed in Hall (1982a). Define

the "likelihood with respect to All by

L= 7f f(Y j ).
jEA

Choosing h to maximize L(h) is the same as maximizing

Let

lin = sup
xda ,b]

~n(x,h)-f(x)

f(x)

Suppose h = h(n) is chosen so that

h 7 0, (nh)-l log n 7 o.
Then, by theorem A of Silverman (1978)

lin 7 0 in probability.

'II For j E A, let
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Note that

Thus it is desired to choose h to maximize

(7.1) .L ~nj - } .L ~nj
2

+ 0p(.I ~n/) .
JEA JEA JEA

Bounds will be found for the first term using the projections which

Hall (1982a) has attributed to H~jek (1968). Define

l(x,y) = nh~(Y) K(xh
y

) = nh~(Y) K(Yhx) ,

91(x) = E[l (x ,Yj ) Ij EAJ

By the c~ange of variable u = (y-x)/h, (3.3), (4.1), (4.2), and (4.3),

(7.2) gl(x) = f[nhi(y) K( yhx)J9(Y)pf(Y) dy =

= ~p !K(u)q(x+hu)du =

1 I (hu)k+l (k+l)
= np !K(u)[q(x)+huq (x)+"'+(k+T)1 q (~)Jdu =

= ~p [q(x)+ Bhk q(k)(x) + o(h k)].

Thus,

(7.3)

In a similar fashion
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(7.4) E[(92(Vj)_~)2IjEA] = J[ni(y) (JK(v)f(y+hv)dv - f(y))]2 q(y)pf(y) dy =

=+ sf(h) .
n p

Hence, by the Schwartz inequality,

(7.5)

}

Let #(A) denote the cardinality of the set A. Note that,

n
(7.6) °I linj = °I .I i (Xi'Vj) - #(A) =

J EA J EA 1 =1
n

= I I [i(X.,V.)-91(X·)-92(V.)+G] +
j EA i =1 1 J 1 J

n
+ #(A) I [91(x.)-G] + n I [92(V.)-G] + #(A)(nG-l)

i =1 1 j EA J

Each term will be bounded in turn.

To bound the first term in (7.6), let

r(x,y) = i(x,y) - 91(x) - 92(y) + G.

Routine computations show that

E[( I L r(xo,v.))2I A] = L I E[r(x.,vo)2j jEA],
j EA i =1 1 J j EA i=1 1 J

and
E[r(Xi'Vj)2IjEA] = E[i(Xi,Vj)2_G2IjEA] - E[91(Xi )2- G2] 

-E[92(Vj )2 - G2/jEA] ~

~ E[i(Xi ,Vj )2/ jEA] =

= JJ[ 1 K(~)]2(q(Y)f(Y))f(X)dxdY =nhf(y) h p

=~ JJK(u)2~ f(u+hy)dudy =
n hp f(y)

= O(n-2h- l ) •
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Hence,

n 2 21' 1E( L 1.-_Ll r(Xi,Vj )) = E(#(A)onoE[r(Xi,vj ) j€A]) = O(h- ).
jEA

Thus by the Markov inequality

(7.7) ...
n -1/2L [l(X.,V.)- gl(X,)- g2(V,) + G] = 0p(h ).

i=l 1 J 1 J

For the second term on the right of (7.6), using (7.2), (7.3) and the

central limit theorem
n n
L (gl(X')- G) = L (_1[q(X.) + Bhkq(k)(X.) + O(hk)] -

. 1 1 . 1 np 1 11= 1=

__1 [Eq(X.) + Bh k E q(k)(x.) + O(h k)] =np 1 1

Thus,

• (7.8)
n

#(A) L (g(X.) - G) = M + 0 (n l / 2hk),
i=l 1 n p

...

where Mn does not depend on h.

For the third term on the right of (7.6),

Hence, by (7.4) and (7.5),

E[ L (g2(V.)-G)]2 ='o(n-lsf(h))
j EA J

from which it follows that

(7.9)
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Now the terms of (7.6) have been bounded by (7.7), (7.8), (7.9) and

(7.3). The result is

.I ~nj = Op(h- l / 2) + Mn+ Op(n l / 2hk) + Op(n l / 2sf(h)1/2) +
JEA

+ nhk ~ Jq(k )(x) f (x)dx + 0 (nhk) .

The claim of theorem 2 follows directly from this and (7.1).·

8. OUTLINE OF PROOF OF THEOREM 1

To see the idea behind this proof, note that

~
~(y.'h)-f(Y')J2 ] A 2 ()

E n J 2 J jEA = E![fn(y,h)-f(y)] ~pfy dy.
fry j)

Thus, speaking heuristically, if all the seemingly lower order terms in the

statement of theorem 2 are indeed of lower order, then theorem 1 will follow

from a law of larger numbers.

The main work in making the above argument rigorous is contained in the

following lemma.

Lemma:

1 I
#fA) j EA

•
The proof of this is not given here because it is too similar to the proof

of theorem 1 of Hall (1982b). Note that assumptions (4.5) and (4.6) are

somewhat stronger than those used by Hall.

Using the lemma, (4.7), and the fact that #(A) has a Binomial (n,p)
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distribution, the proof of theorem 1 will be complete when it is shown that

the last terms of (5.5) are dominated by k+ nsf{h). However, this follows

easily from assumption (5.4).
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