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Abstract

Results are obtained on the likely connectivity properties

and sizes of circuits in the column dependence matroid of a

random rxn matrix over a finite field, for large rand n. In a

sense made precise in the paper, it is shown to be highly

probable that when n is less than r such a matroid is the free

matroid on n points, while if n exceeds r it is a connected

matroid of rank r. Moreover, the connectivity can be

strengthened under additional hypotheses on the growth of nand

r using the notion of vertical connectivity; and the values of

k for which circuits of size k exist can be determined in terms

of nand r.
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Section 1: Introduction.

In earlier joint papers (1982a, 1982b) and a paper by

Oxley alone (1982) we considered the likely behavior of large

matroids obtained by randomly and independently retaining (with

probability p) or deleting (with probability I-p) the elements

of the finite projective geometry PG(r-l,q). Such a process

produces a matroid without loops or multiple points (dependent

singletons or pairs), but which has a random number of elements.

In the present paper we consider matroids obtained by

randomly and independently choosing n elements of the r

dimensional vector space over GF(q) (the field with q elements,

where q is a fixed prime power), allowing the zero vector to be

chosen and allowing multiple choices of the same vector. That

is, we consider the column dependence matroid of an rxn matrix

whose entries are chosen independently and at random from

GF(q). Such a matroid has n elements, possibly including loops

and multiple points. Allowing the presence of such elements
,

simplifies the calculation of probabilities and thus permits us

to obtain more results.

In a sense that we will presently make precise, we show

for such random matroids that for large rand n the following

are highly probable: if n is less than r, then the matroid is

the free matroid on n elements, while if n exceeds r then the
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matroid is a connected matroid of rank r. Moreover, under

additional hypotheses on the growth of rand n we obtain

stronger results on the connectedness of the matroid and

estimates of the likely sizes of its circuits.

A more detailed summary of these results will be given

below, after we have discussed the terminology and notation we

shall use.

Terminology. Let q be a fixed prime power and let {n } be
r

a sequence of positive integers. For r = 1,2,3, ••• , let M be
r

-e an rxnr matrix whose entries are chosen independently from

GF(q), each member having probability l/q of being chosen for

any entry. (No assumption need be made concerning the

independence of the M ; they may be mutually independent, or ifr

the nr are increasing each may be a submatrix of the next.) We

will use the symbol Mr to denote both the matrix and its column

dependence matroid.

Most of our theorems state that under certain conditions

involving the growth of the nr , and for certain properties, say

A, which a matroid mayor may not possess, a series

~r P[Mr does not have property A]
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converges. By the well-known first Borel-Cantelli Lemma (Lemma

2.1 below), it follows from such a conclusion that with

probability 1 there exists a random integer R such that for all

r ~ R, Mr has property A. To shorten such statements, we will

attach the following meaning to the word eventually: if there

exists an integer R such that a given property A(r) holds for

all r ~ R, then we say that A(r) holds eventually. Thus a

consequence of the convergence of the above series is that with

probability 1 eventually Mr has property A.

We will follow Welsh (1976) for all matroid terminology

that is not otherwise explained, with two exceptions. First,

we will use rk M to denote the rank of a matroid M. Second, we

will say that a matroid M is connected even if it contains

loops, provided that deleting the loops leaves a matroid that

is connected in the usual sense.

We will also use the 0, 0, and ~ notations as they are

customarily used. Thus, for example, a = b + 0(1) means thatr r
,

a r - br approaches 0 as r increases, and a r - br means that

lim ~ a /b = 1.r-,(D r r

Summary of results. Section 3 concerns the rank of Mr.

Its results imply that if nr/r is eventually bounded below 1,

then with probability 1 eventually Mr is the free matroid on nr
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elements: while if n /r is eventually bounded above 1, thenr

with probability 1 eventually M has rank r.r

In section 4 we show that if n /r is eventually boundedr

above 1, then with probability 1 eventually M is connected.
r

Moreover, under additional hypotheses on the limiting value of

nr/r, we can make considerably stronger statements concerning

the commectivity of M. To do this, we use the notion ofr

vertical m-connectivity, the matroid generalization of the

graph-theoretic concept of m-connectivity. Vertical m-

connectivity was introduced by Tutte (1961, 1966) and has been

studied by several authors including Cunningham (1981), Inukai

and Weinberg (1981), and Oxley (1981). Theorem 4.4 provides

that if nr/r approaches a limit large enough to satisfy a

certain inequality, then with probability 1 eventually Mr is

vertically r-connected. For smaller limiting values of n /r,
r

Theorem 4.5 gives in effect the vertical connectivity of M. A
r

table at the end of the section gives, for various q, the

critical limiting value of nr/r for vertical r-connectivity and

the vertical connectivity for various smaller limiting values

of n Jr.r

In Section 5 we consider the existence of circuits of

various sizes. Theorem 5.1 gives an asymptotic value for the

probability that Mr has no circuits of size kr , when {kr } is a
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sequence with k = o(n). Theorem 5.2 asserts, for a sequencer r

{krl for which kr/nr is boun~ed above zero, that with

probability 1 eventually Mr has or does not have circuits of

size k r according as a certain quantity is eventually bounded

below or above 1. A table at the end gives, for various q and

various limiting values of nr/r greater than 1, the size of the

largest circuits that can be expected in M .
r

Related work. Our study of random matroids has from the

beginning been motivated by the extensive theory of random

graphs, begun by Erdos (1959) and Erdos and Renyi (1959, 1960).

The sUbject is well expounded and documented in the books of

Erdos and Spencer (1974) and Bollobas (1977) and the articles

by Spencer (1978) and Bollobas (1981), and the reader is

referred to these works and their bibliographies.

The only result obtained in our earlier papers that is

directly comparable to a result of this paper is Theorem 2.1 in

Kelly ~nd Oxley (1982b). This theorem provides that rq-r is a

threshold probability for the property that a random submatroid

of PG(r-l,q) have full rank. Otherwise stated: if the expected

proportion of elements retained, which corresponds to nrq-r in

the present paper, is o(rq-r), then with probability 1

eventually the rank is less than ri while if rq-r = o(nrq-r),
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then with probability 1 eventually the rank is r. This result

corresponds precisely with the results of Section 3 of this

paper.

Other work on random matrices appears in papers of Erdos

and Renyi (1963, 1968) and of Komlos (1967, 1968). Erdos and

Renyi are primarily concerned with the permanent of a random

square matrix of zeroes and ones, while Komlos studies random

matrices over the field of real numbers.
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Section 2: Preliminary Lemmas.

Our first lemma will be used in most of our theorems to

deduce the likely behavior of random matroids of large rank

from the convergence of certain series. The remaining lemmas

are elementary bounds from probability theory. Unexplained

notions can be found in Feller (1968).

Lemma 2.1 (Borel-Cantelli). If {Ar } is a sequence of events in

a probability space and if ~rP[Ar) converges, then with

probability 1 there is a random integer R such that none of the

Ar occur for r > R.

Proof can be found in Feller (1968).D

Lemma 2.2. If A, B, and C are events in a probability space

and P[B n C) > 0, then

peA) < P[AnBnc) + P[not B) + P[not C)
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< P[ AIBn c] + P[not B] + P[not c].

This follows easily from the definition of conditional

probability. 0

Lemma 2.3. If nand k are positive integers and 0 < k < n, then

because

Proof.

of the

second

The first inequality is an easy inductive consequence

inequality a < a-l , which is valid for a > b > 1. The
b - b-l -

n nk
inequality follows because obviously (k) i kT and

Stirling's formula kke-k(2Rk)l underestimates k! .0

Lemma 2.4 (The first- and second-moment methods). If X is a

nonnegative integer-valued random variable, then

P[X > 0] < EX.
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If X has finite variance, then

P[X = 0] < EX
2

_ 1.
(EX) 2

•

Proof. We omit the easy proof of the first assertion. A proof

of the second is found in the paper of Kelly and Oxley

(1982a).D
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Section 3: Rank.

Let q be a fixed prime power, let {nr } be a sequence of

positive integers, and for r = 1, 2, ••• , let Mr be (the column

dependence matroid of) an r x nr matrix whose entries are

chosen independently and at random from GF(q).

Theorem 3.1. If eventually nr < ~r for some ~ with 0 < ~ < 1,

then

Consequently, with probability 1, eventually Mr is the free

matroid on n elements.r

The proof ,~ppears below.

Corollary 3.2. If {nr } is arbitrary and {kr } is a sequence of

positive integers with kr ~ nr and eventually kr < ~r for some

~ with 0 < ~ < 1, then

>r P[the first kr columns of Mr are dependent] < 00.

Consequently, with probability 1, eventually the first kr
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columns of Mr are independent.D

•

Corollary 3.3. If eventually nr > (l+~)r for some ~ > 0, then

>r P[rk Mr < r] < CD.

Consequently, with probability 1, eventually M has full rank r.r

Rearrange the sequence {nr } as {nr .}

* J., and let Mj be the transpose of Mr .•
J

sequence satisfying the

the theorem, and the assertion fol10ws.D

< nr < ••
2

subsequence of a

Proof of Corollary 3.3.

so that nr 1
*The Mj form a

hypotheses of

Proof of Theorem 3.1. The proof is in three steps:

1. A combinatorial argument and simple inequalities show that

I
n- 1

P[rk Mr < nr ] = . P[rk Mr = j]
J=O

• a· ,
J

•
where
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a. = (1?') q(j-r)(n- j ) •
] ]

(Here and elsewhere we will drop the subscripts from nr and k
r

when it is convenient to do so.)

2. Consideration of the ratios aj+l/aj shows that for

sufficiently large r, a O ~ al ~ ••• < an-l.

3. Consequently, P[rk M < r] < na l' which is at mostr - n-
r2qr(~-1). This is the r th term in a convergent series.

Proof of 1: Let C denote the set of columns of Mr.

P[C is dependent] = P[a11 entries of Mr are 0]

\n-1
+ L P[some j-subset of C is a basis for Mr ]

j=l

~n-l

< q-rn +L\ (~) P[co1umns 1, ••• ,j are a basis for Mr ]
j=l ]

~.n-1 r r r ]'-1 ]' n-]'
= q-rn + \ n 9-=!~ 9 -q ~

L (].) r r··· r (r)
j=l q q q q

\n-l n gjrqj(n- j )
< L (].) nr
- j=O q
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,\n-l
= L a

J
,.

j=O

Proof of 2: For j = 0,1, ••• ,n-2,

aj+l
=a.

J

~-~ qr+n-2j-l
]+

2 r+n-2(n-2)-1
> n-1 q

><l/n)qr-n+3 •

But eventually n < ~r, and so

and since ~ < 1 this is eventually greater than 1. Hence

eventually a n- l is the largest among aI' ••• , an-I.

Proof of 3: Therefore

P[the columns of Mr are dependent] < nan_l
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Since ~ < 1, this is the r th term in a convergent series.D
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Section 4: Connectivity and vertical connectivity.

In this section we show that when nr/r is larger than 1,

Mr is connected. Moreover, when nr/r is larger than 2, the

connectivity of Mr is considerably strengthened. It will be

convenient to assume not merely that eventually nr/r > 1 + ~

(where 1 < ~ < 00), but that lim.....:... n /r = 1 +~. Little- r-,-oo r

generality is lost by this assumption, and our proofs will be

simplified.

A matroid M of rank r is said to be vertically k-separated

if there are two sets partitioning the ground set of M, each of

rank at least k, such that the sum of their ranks equals r-l+k.

For an integer m ~ 2, M is vertically m-connected if M is not

vertically k-separated for any k = 1, 2, ••• , m-l.

By way of illustration we mention three elementary

properties of vertical m-connectivity. The third of these will

be used in the proof of the next theorem.

Proposition 4.1. If M is the cycle matroid of a graph G, then

M is vertically m-connected if and only if G is m-connected.

Proofs of this result are given independently in Theorem 1 of

Cunningham (1981), Theorem 2 of Inukai and Weinberg (1981), and
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Theorem 2 of Oxley (1981).0

Proposition 4.2. A matroid is vertically 2-connected if and

only if it is connected.

This is (3.5) in the paper of Tutte (1961).0

Proposition 4.3. A matroid of rank r is vertically r-connected

if and only if it is not the union of any two- of its

hyperplanes.

This is Theorem 5 of Inukai and Weinberg (1981) and also is on

p. 208 of Oxley (1981).0

Theorem 4.4. If limr~oo nr/r = 1 + ~ where

(4.1)

then

In(2q-l)/(2 In q - In(2q-l)) < ~ < 00,

>r P[Mr is not vertically r-connected] < 00.

Consequently, with probability 1, eventually Mr is vertically r-



-e

page 4-3

connected.

Proof.

P[M is not vertically r-connected]r

< P[Mr is not vertically r-connected I rk Mr = r]

+ P[rk Mr < r].

But by Corollary 3.lb, since nr ~ (1+~/2)r eventually, ~r P[rk

Mr < r] < 00, and so it suffices to show that >rRr < 00, where

R r = P[Mr is not vertically r-connected I_rk Mr = r].

By Proposition 4.3,

R r = P[Mr is the union of two hyperplanes]

< P[every column of Mr is in the union of some

pair of hyperplanes of V(r,q)]

< (# hyperplanes of v(r,q»2 P[a column is in the

union of two distinct hyperplanes]n
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Now as r ~ co the quantity in brackets approaches 0 if cx = co

and approaches (2q_l)1+CX/q 2CX otherwise. Therefore the desired

result follows if either cx = co or if (2q_l)1+cx < q2cx ; that

is , if (4.1) holds. 0

The next theorem gives sufficient conditions for vertical m-

connectivity when m < r.

Theorem 4.5. Let {mr } be a sequence of integers with 1 ~ mr <

r. Suppose that limr~co mr/r = t and limr~co nr/r = l+cx,

where O<t<l and t<cx<co. Then under any of the following

conditions A, a, or C,

~r P[ Mr is not vertically mr-connected ] < co,
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and consequently, with probability 1, eventually M is
r

vertically mr-connected:

A. 0 < t < 1 and ~ = OD.

B. 0 < t < 1 and t In«1+t)~/t2) < (~-t)ln q - 2t.

C. t = O.

On taking mr = 2 for all r > 2 and using Proposition 4.2, we

obtain the following:

Corollary 4.6. If eventually nr > (l+~)r for some ~ > 0, then

~r P[Mr is not connected] < OD. Consequently, with probability

1, eventually Mr is connected.

Before proving Theorem 4.5 we remark on Condition Band

establish a lemma.

Notice that for fixed values of t and q, Condition B is always

satisfied for sufficiently large~. Table 1 at the end of

this section gives the smallest such value of ~ for various t
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and q.

Lemma 4.7. If M is a random rXn matrix over GF(q) and D is

any set of columns of M, then

P[ M is vertically k-separated and rk M = r

and D is independent 1

\1i(r+k-l.!J n-1DI r+k-l gj+gr+k-I-j_gk-l n-(r+k-l)
< L (r+k-l- D1)( J')[ r 1 •
- j=k q

Proof. Suppose M has rank r and is vertically k-separated, and

that D is an independent set of columns. Then for som~ j in

{k, k+l, ••• , li(r+k-l.!J}, there are sets X and Y of ranks j and

r+k-I-j partitioning the set of columns of M, and they have

bases Xo and YO containing Xl = XI') D and YI = Y n D,

respectively. Let X2 '= Xo - Xl and Y2 = YO - YI • Let E =

X2 U Y
2

•

Otherwise stated: there exists E = M-D of size r+k-I-IDI

and a partition of DuE into Xo and YO of sizes j and r+k-I-j,

such that Xo and YO are independent; and all the other columns

are either in the span of Xo or in the span of yO.
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The number of choices of such E, XO' and YO is

n-1DI r+k-l
(r+k-l- DI)( j ),

and the probability for any such choice that the other columns

are spanned by Xo or by YO is

J' r+k-l-J' k-l
[~ +g -g n-(r+k-l)

r 1
q

The result follows.D

Proof of Theorem 4.5.

First we notice that the sufficiency of A or the sufficiency of

B implies that of C: for if t = 0 then we choose t l > 0 small

enough that B holds (or choose t l arbitrarily if ~ = 00), and

let m~ = Lt1rJ, which is eventually greater than mr since mr/r

~ O. Then for sufficiently large r,

P[Mr is not vertically mr-connectedl

~P[Mr is not vertically m;-connectedl:

and because A or B holds the latter is the r th term in a

convergent series.
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Now we prove the sufficiency of A and that of B. For any

€ with 0 < € < 1 let D(r,€) (or simply D) denote the set

consisting of the first Lr(l-€)J columns of Mr. Then by Lemma

4.6,

(4.2)

where

P[Mr is not vertically mr-connected]

< Pr + P[rk Mr<r] + P[D is dependent],

Pr = P[Mr is not vertically mr-connected, rk Mr=r,

and D is independent].

By Corollaries 3.2 and 3.3, each of the last two terms in

(4.2) is the r th term in a convergent series; thus it suffices

to show that> P < 00. The sufficiency of A and of B for-r r

this will follow from the inequality

•

(4.3)

where

2
P < ~ rn e Br

r ,r - ~

B = e€+2m/r (l+m/r ) m/r(m/r)-€ X
r (m/r)2
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x (-l+n/r) e+m/r ( (l+qm-r) /q) (n/r) - (m/r) -1 •

The important quantity in this expression is

C
r

= (l/q)(l + qm-r) = (l/q)(l + qr(-l+m/r»,

which approaches l/q as r increases, because m/r approaches t,

which is less than 1.

Before proving (4.3) we show how it implies the

sufficiency of A and of B for the summabi1ity of >r Pre

All that is needed is to show that under each of these

conditions, there is a choice of e > 0 for which lim ~ B <r"""'7<D r

1.

under condition A, 1imr Br = O.

Under condition B,

and there will exist e > 0 for which this is less than 1 if
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equivalently, if

or

and this is Condition B.

So we complete the proof of the theorem by proving (4.3).

Now

\m-l
Pr ~ L P[Mr is vertically k-separated,

k=l
rk Mr=r, and D is independent],

and so according to Lemma 4.6,

<
\m-l ,!i(r+k-llJ

P L L b(j),
r - k=l j=k

where
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We proceed in three steps:

1. For sufficiently large r and for any k in

{1, 2, ..., m-1} ,

2.

b (k ) > b (k+1) >

Consequently

... > b( lir+k-1)/~ ).

·e
-m-1

Pr < \ (r/2)b(k)
- L k=l

and we will find a bound on each term in this sum that is

independent of k.

3. Finally we perform more manipulations to produce (4.3).

Details.

1. For any j in {k, k+1, ••• , lir+k-1)/~-1},
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b(j)/b(j+l) j+l n-(r+k-l)
= r+k-j-l A ,
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=(qj-k+l + qr- j _ l)/(qj-k+2 + qr-j-l _ 1) •

Now we show that

·e (4.4) A
q2+l

> 2q •

This inequality is equivalent to

2qj-k+2 + 2qr-j+l - 2q

that is, to
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Ignoring (q_1)2 and dividing by q2_1 , both of which are

positive, we see that to prove (4.4) it is sufficient to show

that qr- j -1 > qj-k+2; that is, that r+k-3 ~ 2j. But this is

true if

Thus (4.4) is proved. Also,

j+1 2
r+k-j-1 > r+k

(as may be seen by cross-multiplying and noting that j>l).

Consequently

b(j)/b(j+1) > r~k (~)n-r-k+1

Because k < m-1,

b(j)/b(j+1) > __2__ (~)n-r-m
- r+m 4

r ('!!-!!!-1 )
= 2 (i) r r

r (l+m/r) 4

But ~ ~ - 1 approaches ~ - t, which is positive; and
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therefore for large r, b(j)/b(j+l) is positive for all j in

{k,k+l, ••• , !t..(r+k-2jJ-l}.

2. Therefore

-m-l
Pr < \ lr b(k)

- Lk=l

=1.
r

\m-l n-1DI r+k-l ~k+gr-l_gk-jn-(r+k-l)
2" L (r+k-l- 0 1)( k) r •

k=l q

To bound the binomial coefficients we use Lemma 2.3.

= (r+m-l) < (r+m) < «r+m)e)m
m m m·

Also,

n-1D\
(r+k-l- 0 I )

= (n-r+v) < rJn-r+v)eJk-l+V
k-l+v [k-l+v '
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where v denotes rr€l •

Now because (a/x)x is increasing for 0 < x ~ ale, and

because (for sufficiently large r) m+v ~ n-r+v, it follows that

( n-I 0 I ) < « n-r+v) e) m+v
r+k-l- 01 - m+v

< «n-r+r€+l)e)m+r€+l
m+r€ •

In addition,

·e ~
k r-l k-j n- (r+k-l)q +g -g

qr ~
k r-l k-j n- (r+m-l)< 9 +g -g

- rq

(because the quantity in parentheses is less than 1)

< ~r-l+gm:2(g_1)jn-(r+m) •

q

Therefore

3. Now we express the above bound as much as possible as an

r th power of quantities involving m/r and n/r, which we denote
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by M and N, respectively.

rm/2 r+m 1= 1 + •
m M '

n-r+r€+l = N-l+€+(l/r) < N-l for large r;
m+r€ M+€ - M

and therefore

r 2 r 2
= - (N-l)eB < ~2 NeB r,2 r - r

where

2M+€= e

The following table shows, for selected values of q and

selected limiting values of n/r, the supremum of the values of
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t for which Condition B of Theorem 4.5 holds. (Note that the

~ of Theorem 4.5 is one less than the limiting value of n/r.)

Values in the table are to three decimal places, rounded down.

Roughly speaking, for a given value of q and ratio of n to r,

one can expect a large rxn matroid over GF(q) to be vertically

m-connected if m/r is less than the tabulated value of t.

In addition, the rightmost column of the table shows, for

each q, the infimum of the limiting values of n/r for which the

hypothesis of Theorem 4.4 is satisfied. Values are rounded up.

Roughly speaking, for a given value of q, one can expect a

large rxn matroid over GF(q) to be vertically r-connected if

n/r exceeds the tabulated value.
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for r-

q 1.01 1.05 1.1 1.2 1.5 2.0 2.5 3.0 connectivity

2 .0005 .003 .006 .014 .041 .091 .147 .205 3.82

3 .0008 .005 .011 .024 .070 .158 .254 2.74

4 .001 .006 .014 .031 .091 .205 2.35

5 .001 .007 .016 .037 .107 .241 2.15

-e 7 .001 .009 .020 .045 .130 1.93

8 .001 .010 .022 .048 .139 1. 87

9 .001 .010 .023 .051 .146 1. 81

16 .002 .013 .028 .063 .180 1.63

31 .002 .016 .034 .075 1.49

43 .002 .017 .037 .081 1.44

125 .003 .020 .044 .096 1. 33

210 .004 .026 .055 .118 1. 22

220 .006 .073 1.11
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Section 5: Existence of circuits.

Again we let Mr be (the column dependence matroid of) a

random r x nr matrix over GF(q). From Theorem 3.1 we have that

if eventually nr < 9r for some 9 < 1, then with probability 1

eventually Mr has no circuits at all. Consequently we shall

assume that eventually n > 9r for some 9 > O. (The naturalr -

assumption, that nr/r is eventually bounded above 1, is

stronger than what is needed for our results.)

Let {kr } be a sequence of nonnegative integers, and for r

= 1, 2, ••• , let Cr denote the number of kr-circuits in Mr.

Our first theorem concerns small circuits; that is, the

case in which kr/nr approaches zero as r increases. In its

proof, as elsewhere, we shall freely drop the subscripts from

Theorem 5.1. Let

k -1r
a = (g-l)

r k ,r·

k r -r
Suppose that limr~OD kr/nr = 0 and also that nr q is

bounded. Then

-a
P[C

r
= 0] _ e r
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Proof. ~or any rand k, let Dr(k) denote the number of

circuits of sizes 0,1,2, .•• ,k in Mr. Then

We complete the proof ,by showing that

-a
P[Dr(k-l)=O) ~ 1 and P[Dr(k)=O] _ e r

~ tt Now the event [Dr(k) = 0] is the intersection of EO' Ek , Ek+l ,

••• , En' where: EO is the event that the first k-l columns are

independent, and for j = k, k+l, ••• , n, E j is the event that

column j is not 0 or a linear combination of k-l of the first j-

1 columns. For these events we have

r k-29 -q
qr

;

etc. Hence



r r
= L.:l 5L.::SP[DrCk)=Ol r r

q q

Now

r k-29 -g
qr

n-l
TT

j=k-l
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r k-29 -g
qr

-r ~k-2 i -r+k-l
> 1 - q L q > 1 - q •

i=O

Since nk q-r is bounded and limr +
CD

~ = 0,

eventually k < ire Thus

r k-2g -q~ L-_ ~ 1 as r ~ CD.

q

Consequently we complete the proof by showing

C5.1)

and

~
--k-l ~

TTnJ':~_1 1 - q-r L\ Cl)Cq-l)i
i=O

-a +o(1)r_ e



(5.2) ~
--k-2 ~n-l -r \ j iTI j =k-2 1 - q Li=o (i) (q-l) ~ 1.
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Proof of (5.1): Denote the left side of (5.1) by Ar • If x <

i, then

In(l-x) = -x - K(x)x2 where i < K(x) < 1.

-e
We now obtain a uniform upper bound on

for all j such that k-l ~ j ~ n-l, that will enable us to apply

the above observation to get In Ar •

-r n-l ~k-l (q_l)i
< q (k-l) L

i=O
(for large r)



< q-r On-l)~k-l ,k-l (q_l)i
[ k-l J Li=o

< -r On-l)~k-l qk-l
- q [k-l J

I k -r k-l
5. n n q ( ke"?l ) •
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(by Lemma 2.3)

Since nkq-r is bounded, the last expression approaches 0 as r

~ CD. Therefore eventually

_ ,n-l -r ,k-l. .
= q (~)(q_I)1 - B

r
,

Lj=k-l Li=o 1

where

-n-l G -\k-l. ~2B
r

- \ K. q-r (~)(q_I)1
- Lj=k-l J Li=o 1

and i < K. < I for all j. Thus eventually
J



-e

-n-1 G -k-1. ~2
Br ~ L\' q-rL\. (I)(q-1)1

]=k-1 1=0

As nkq-r is bounded, it follows that Br = 0(1) and so

page 5-6

~k-1 --n-1.
= _q-r \ (q_1)i \ (~) + 0(1)

Li=o L j =k-1 1

where



~k-2 .-r \ ~ n< q L. (q-1 ) ( i +1 )
~=O

n -r ,k-2 i
< (k-1)q L. (q-1)

~=O

(for large r)
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Thus

< (ne )k-1 -r k-2
k-1 q q

< 1 k -r (~)k-1
- n n q k-1

= 0(1).

(by Lemma 2.3)
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_ g-r Cg_1 )k-1nk
= k! + o(1)

= -a + 0 (1).r

Proof of C5.2): The left side is bounded below for large r by

and for large r this is greater than

E n-1 -r ,k-2 1~> exp -nC k_2 )q L Cq-l)
i=O

and so it remains only to show that nc~:~)q-rqk-2 ~ O. But

n-1 -r k-2 < IJ n-l)~ k-2 -r k-2
nC k_ 2 )q q n[ k-2 J q q
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1 k -r (PC'T) k-2< -n q ~- n k-2'

Again since nkq-r is bounded, the result follows.D

Our final theorem concerns large circuits: that is, the case in

which k /n is bounded away from O. Our proof uses the firstr r

and second-moment methods, employing the inequalities of Lemma

2.4. Before proceeding to the theorem we obtain estimates for

the bounds given by that lemma for the random variable Cr'

Again we drop the subscripts from nr and kr when it is

convenient to do so.

Lemma 5.2.

(5.3)

and

k-l
EC

r
= (n)Ter k-l) (g-l)
k' r

q
,

EC 2
r [S(r,j)-l]
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(5.4)
1 gr

+ --- [S(r,k-l) k-l -1] ,
(n) (q-l)

k

where

and

T(r,j)

S(r,j) 1= :"7-=-~T(r,j) •

... r j-l9 -q
qr

-_
Proof. For any k-set J of columns let

{~
if J is a circuit,

X
J =

if not.

Then

Now J = {cl' ••• ,ck } is a circuit if and only if cl, ••• ,ck_l are

independent and ck is a linear combination of them with all

coefficients nonzero. Therefore
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EXJ = EXJ
2 = prJ is a circuit]

r k-2 k-l9 -q (9-1 )
qr qr

,

and (5.1) follows.

Now

EC 2 \ (X
r = L-(J,K) E XJ K) ,

the sum extending over all ordered pairs of k-sets. This sum

equals

,k-l ,(j)
E(XJXK ) +

, 2

Lj=Q L(J,K) ~
EXJ '

( j )
where 'L indicates a sum extending over ordered pairs of k-

(J,K) \ .
sets whose intersections have j elements, and / indicates a

!-J
sum over all k-sets.

Now suppose that J and K are k-sets whose intersection is

a j-set for some j, Q < j < k; say

, ,
J = {cl, ••• ,Cj,Cj+l, ••• ,ck} , K = {cl, ••• ,Cj,Cj+l, ••• ,ck}.
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If J and K are both circuits, then {Cl, ••• ,Cj,Cj+l' ••• 'Ck_l}
I ,

and {Cl, ••• ,Cj,Cj+l, ••• ,ck_l} are independent, and each of ck '
I

ck is a linear combination of an independent (k-l)-set with all

coefficients nonzero. Therefore

EXJXK = prJ and K are both circuitsl

Also, for 0 < j < k, the number of ordered pairs of k-sets

whose intersections are j-sets is (~)(~)(~:~). Consequently

and so

EC 2
r -k-l

< \
- Lj=o

1 gr
+ --S(r,k-l) k-l •

(~) (q-l)
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(5.2) follows upon observing that

+ _1_ = 1 ,
( n)
k

•

because this is the sum of the probabilities for a

hypergeometric distribution.D

Theorem 5.3. Suppose {kr } is a sequence of positive integers

such that kr < nr , kr ~ r+l, and eventually kr/nr ~ y for some

positive y. Define

Also assume that eventually nr > 9r for some positive 9.

a. If eventually br ~ ~ for some ~ with 0 < ~ < 1, then

> P[C > 0] converges.-r r
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b. If eventually br > a for some a > 1, and if eventually

k In < 6 for some 6 < 1, then >rP[Cr = 0] converges.r r-

Consequently, with probability 1, eventually Mr has no kr 

circuits if br is bounded below 1, and Mr has at least one kr 

circuit if br is bounded above 1 and kr/nr is bounded below 1.

At the end of this section is a table showing, for various

values of q and limiting values of nr/r, the supremum of values

of k for which br exceeds 1.

Proof. Again we write k and n for kr and nr •

Proof of a:

(g_l)k-l= (~)T(r,k-l)
qr

(5.5)

• Stirling's formula implies that eventually



Hence eventually

< Jl[~]k[-B-]n-k (q_l)k
P[Cr > 0] Y k k- n- qr

Assertion a follows.

Proof of b: From Lemmas 5.2 and 2.4 we get

page 5-15



page 5-16

where

,Lk-31og kJ
Dr = q

Lj=o

and

1 r
Fr = -n-[S(r,k-1) q k-l - 1] •

(k) (q-l)

[S(r,j)-l],

We show in turn that >rFr' >rDr' and >r Er all converge if

eventually br > B > 1.

") F :-r r

j-1. --"IT (1 _ q-r+i)T(r,J)
i=O
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which is a positive constant, say~. Therefore

S (r, k-l) < l/~, and

But this is a constant multiple of the reciprocal of the

quantity (5.5), and that quantity is summable if br is bounded

below 1. Therefore Fr is summable if br is bounded above 1.

> D-r r
.. First notice that

S(r,j) - 1 <

< [1 + 1 ] j _ 1.
-r::)q

But for j < k - 3 log k, r-j ~ CD as r increases, and hence- q

asymptotically for these j,



j/qr- j

S(r,j) - 1 < e - 1.

Thus
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Because the ratios involving binomial coefficients are

hypergeometric probabilities (see Feller (1968»,

[
r-k+31og kJ

Dr < exp k/q q - 1

Because eX - 1 < 2x for small positive X, eventually

2
Dr < 2 r-k •

k q
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But eventually kr > yar, and hence > D converges.-r r

)" E
-r r As already noted, S(r,j) - 1 is bounded above by a

positive constant if br is bounded above 1. So it suffices to

show that if

\ k-1

Gr = L j = Lk-310g kJ +1
q

then ~rGr converges. But writing h for r3 10gqkl, we have

= h

Using Lemma 2.3, we get



·e
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Now our hypotheses imply that n < k/t and ~ ~ b < 11 hence

because h = O(log k) this is dominated by bk , and because k >

tn _> tar, > G is summable.D-r r

The following table shows, for selected values of q and

selected limiting values of n/r, the supremum of the values of

k/r for which the hypotheses of Part b of Theorem 5.3 hold.

Values are to three decimal places, rounded down. Roughly
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speaking, for a given value of q and ratio of n to r, one can

expect a large r x n matroid to have circuits of all sizes less

than the tabulated fraction of r.



Table 2.

limiting value of ~
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q 1. 01 1.5 2.0 5.0 10.0 100

2 .445 .260 .220 .155 .129 .086

3 .603 .373 .318 .231 .195 .132

4 .683 .437 .378 .279 .238 .163

9 .827 .577 .511 .394 .342 .242

25 .911 .687 .622 .500 .442 .324-- 125 .960 .786 .729 .614 .556 .428

210 .981 .852 .805 .706 .652 .526

220 .994 .928 .900 .837 .799 .699
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