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ABSTRACT

The problem of estimating the variance parameter robustly in a

heteroscedatic linear model is considered. The situation where the

variance is a function of the explanatory variables is treated. To

estimate the variance robustly in this case, it is necessary to guard

against the influence of outliers in the design as well as outliers in

the response. By analogy with the homoscedastic regression case,

two estimators are proposed which do this. Their performance is

evaluated on a number of data sets. We had considerable success with

estimators that bound the "self-influence", that is, the influence

an observation has on its own fitted value. We conjecture that in

other situations, for example, homoscedastic regression, bounding the

self-influence will lead the estimators with good robustness properties.
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1. Introduction

Heteroscedastic linear models occur frequently in practice, in such

fields as radioimmunoassay (Finney (1976) and Rodbard and Frazier (1975)),

chemical kinetics (Box and Hill (1974)), and econometrics (Hildreth and

Houck (1968)). A number of recent papers are concerned with modeling the

variance as a parametric function either of the mean response or the in­

dependent variables; see, for example, Box and Hill (1974), Carroll and

Ruppert (1982), and Dent and Hildreth (1977).

Modeling the heteroscedasticity not only allows the statistician to un­

derstand better the nature of the statistical variability in the data, but

also to estimate the mean response more efficiently by using estimated var­

iances as weights.

In this paper we introduce outlier-resistant (or "bounded-influence")

estimation methods for such hctcroscedastic linear models. Outlier-resis­

tant methods are, of course, useful when the error distribution is non-nor­

mal, but they are of benefit as well for other types of deviations from the

ideal model. For example, the model for the mean response or for the variance
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may be adequate only over a restricted region of the design space. At the

extreme points of the design these parametric models may break down; this

is a particularly dangerous situation since these so-called high-leverage

points are extremely influential in determining the values of the estimators

unless "bounded-influence" estimators are used. Also, an occasional value

of an independent variable may be grossly in error, for example, due to a

recording error, though otherwise the x-variables are assumed to be without

error - we are not thinking of the errors-in-variables problem where the in-

•

dependent variables are measured with errors· Here, again, the use of tra-

ditional, unbounded-influence estimators is risky sjnce a disastrously

wrong x-value is likely to have high leverage.

The preceeding motivation for using bounded-influence methods is as

compelling for homoscedastic models as for heteroscedastit models, and

Mallows (1975), Hampel (1978), and Krasker and Welsch (1982) have already

begun the development of outlier-resistant methodologies for the homosced-

astic case.

Here we extend the work of Mallows (1975) and K~asker and Welsch (1982)

to heteroscedastic models. We begin by considering an example, reported

by Leurgans in the Biostatistics Casebook (1980). The data are concerned

with the comparison of a test method and a reference method for measuring

glucose concentration in blood, and consist of 46 pairs of measurements

(x. ,y.), x being the reference and y the test method. A scatter plot of y
1 1

against x for these data reveals a pronounced linear trend. However, a plot

of the least squares residuals against the independent variable, x, gives

a clear indication of heteroscedasticity, the variances tending to increase

with the value of x.

On encountering such heterogeneity of variance in the data, there are
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two traditional approaches; to transform the data, or to perform a weighted

least squares type of analysis. Leurgans chose to perform a log transforma-

tion, fitting the model

tn y. = a' + ~' tn x. + e.
1 1 1

(1.1)

While Leurgans' choice of transformation is certainly reasonable for these

data, in many applied situations one might be reluctant to transform, since

transformation can make it difficult to make inference in the original scale.

In such cases, a weighted analysis may be preferable. We shall consider

weighted analyses, assuming an underlying model of the form

YI. = a + ~ x. + a.E.,
111

(1. 2)

•

for the glucose data, where the {E.} are independent and identically distri­
1

buted disturbances and the {a.} reflect the heterogeneity of variance in the
1

model. The optimal normal theory weighted analysis of the data would involve

basing inference on the transformed variables y~ = y./a., x~ = x./a .. Since
111 1 1 1

the ai's are typically unknown, in practice one will work instead with yi

= y./a., x~ = x./a., where a. is an estimate of a .. Clearly, for efficient
11111 1 1

inference, one would like to use a good estimate of the a. IS. In the ab­
1

sence of replication, the usual approach is to assume some parametric model

for the a. IS; see Carroll (1982) for an alternative. For the Leurgans data
1

we modelled the variance in the following way:

(1. 3)

somewhat analogous to a model used by Box and Hill (1974), although in

their model, the variance is a function of the mean.

A number of estimation procedures have been proposed for models similar

to that described by (1.3). Typically, a preliminary estimate of ~ is ob-

tained, and the residuals from this preliminary fit are used to gain infor-
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mation about the variances. This information is then used to obtain a

more efficient estimate of 8. For example, Box and Hill (1974) and Jobson

and Fuller (1980) both suggest a form of generalized least squares, hereafter

denoted GLS. If one assumes a normal error distribution, one can proceed

in the following three stages:

(i)

(ii)

Obtain a preliminary unweighted least squares estimate of B, say Sp'

Obtain a maximum likelihood estimate of the variance parameters

(a,A) pretending that S = B , and treating the residuals as if they
p ~

were the true errors, and form estimated standard deviations a.
1

~ A
alx. I

1

(iii) Repeat stage (i) with the transformed variables yi

x.la ..
1 1

y.la., x~ =
111

•

When applied to the data set in our example, this generalized least

squares estimation procedure yielded a value of .52 for the estimate of A.

In her analysis of the log-transformed data, Leurgans identified observa-

tion #31 (the point with the lowest x- and y-value) as a massive outlier,

and deleted it from her analysis. On deletion of this point from the

data set, the GLS estimation procedure above gave a value of .86 for the

estimate of A. A change of this size in the parameter estimate, on dele-

tion of a single point, is disturbing and indicates an undesirable sensi-

tivity of the maximum likelihood method to a small fraction of the data.

In the homoscedastic regression case, two general approaches to this

kind of problem have been considered:

(i) the influence approach, where the focus is on identifying those

points in the data set which have a large influence on inferences
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drawn from the data; see Belsley, Kuh and Welsch (1980) and Cook

and Weisberg (1983).

(ii) developing new estimation techniques which automatically limit the

influence of any small subset of the data on parameter estimates.

In our experience, the two approaches complement rather than compete

with one another. Surprisingly little has been done to make the two ap­

proaches applicable for heteroscedastic regression. We shall pursue the

second approach by developing bounded influence estimators for the vari-

ance parameter 0 in heteroscedastic models. We emphasize that we are not

interested in developing a "black-box" estimation procedure - we would like

our estimators to provide diagnostic information about influential points,

and to add to our understanding of the structure of the data.

e In Section 2 we show, by considering the influence function, why the

MLE for the variance parameter is so sensitive to outliers, and we describe

an estimator which partially alleviates this sensitivity. We see that, an-

alogously to the homoscedastic regression case, it is not just outliers in

the response which exert a large influence, but also outliers in the design,

or high leverage points.

In Sections 3 and 4 we consider two classes of estimators for the variance

parameter which alleviate the sensitivity of the estimation procedure to ex-

treme data points. In Section 5 the performance of these estimators is eval-

uated on a number of data sets, and their computation is discussed in the

appendix.

2. The model

In what follows we consider the heteroscedastic linear model

y. = x.'B+a.c.; i=l, ... ,n
1 1 1 1

(2.1)
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where S is a pXl vector of regression parameters to be estimated, x. is a
1

pXl vector, and the {E.} are independent with a distribution F which is
1

assumed to be symmetric with mean 0 and variance 1. 2The quantities cr. are
1

the variances of the y. and reflect the heterogeneity of variance in the
1

model.

A common situation in practice is that cr. is assumed to be some
1

known funli:.tion of the explanatory variables. A very flexible model for this

situation is

cr. = exp [h I (x. ) e] ,
1 1

(2.2)

where h is a known Rq-valued function and e is an unknown qXl vector of

variance parameters. ANote that (2.2) includes the power model cr.= crlx. I
1 1

of the previous section, by taking

hex) = [:ogIXI] and

In many cases, cr. may reasonably be modelled as a function of the mean re­
I

sponse, T., which we might express as
1

(2.3)

analogously to (2.2). The techniques developed below for the model in (2.2)

extend readily to that given by (2.3). Details may be found in Giltinan

(1983). For brevity, we shall discuss only the first model in this article.

We shall be concerned with obtaining bounded influence estimates of the var-

iance parameter e.

To do this, it proves helpful to investigate why the maximum likelihood

estimator of e described above is so sensitive to outliers. Under a normal

error assumption, if S were known, the MLE of e would solve the equation
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(2.4)

The influence function (Hampel; 1968, 1974) for the maximum likelihood esti­

mator is proportional to (E: 2-1)h(x), where E:= (y-x'S)exp[-h'(x)8], and is

thus unbounded. Since the influence function for the MLE is quadratic in

the residual E:, in theory a point with a sufficiently large residual can

have an arbitrarily large effect on the maximum likelihood estimate of 8.

Carroll and Ruppert (1982) suggest guarding against this by replacing the

term in braces in (2.4) by a bounded function X(E:). In practice, one would

also replace x
1
' 'S by x. 'S in (2.4); that is, they suggest solving

1 p
A

n [y.-x.,s j
\ 1 1 P
L X x

i=l _exp [h' (Xi) 81

A

h(x.) = 0
1

(2.5)

to obtain 8. They suggest a choice of X which generalizes the classical

Huber Proposal 2 for the homoscedsatic case. Implementation of this tech-

nique with the glucose data gave estimates of A as 0.72 and 0.87 based on

the full and reduced data sets respectively. Bounding the effect of a large

residual certainly narrows the gap, but not by as much as one might like.

Examination of the influence function for this estimation method reveals

why this is the case - it is proportional to X(E:)h(x). Choice of a bounded

x-function limits the effect of large E: on the estimate, but the factor of

hex) may still lead to unbounded influence. A moderate residual occurring

in conjunction with a large value of Ih(x) r may still have quite an effect
A

on 8. Clearly, if one wishes to protect against this, the estimator for e

must limit not only the effect of large residuals, but also of large values

of Ih(x) I.
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This is analogous to the situation in the usual homoscedastic regression

case. In that situation, the least squares estimate of B is the solution to

n
1: (y.-x. 1(3)X. = 0 (2.6)

i=l 1 1 1

and has influence function proportional to r x, where r = y - x' B. The influence

function will be large in absolute value if either lr/ is large, or if IIxll

is large - i.e. if a point has a large residual or high leverage. Various

suggestions have been made in the recent literature on how to modify (2.6)

to obtain efficient bounded influence estimates of (3 (e.g. Mallows, 1975;

Maronna, Bustos and Yohai, 1979; Krasker, 1980; Krasker and Welsch, 1982).

Extension of these methods to the problem of estimating e is discussed in

Giltinan (1983). In this article we focus on estimates of the type proposed

by Mallows (1975) and by Krasker and Welsch (1982);

and Welsch also discusses Mallows estimators.

the paper by Krasker

One approach to bounded influence estimation proceeds from the view

that one is interested chiefly in limiting the sensitivity of the

estimate to anomalous data, that is, in bounding YI : = sup IIF(x,y) I, where
(x,y)

If(x,y) is the influence function at a point (x,y). This definition is not

invariant to a change of coordinate system, and Krasker and Welsch propose two

alternative definitions of sensitivity which circumvent this lack of invariance:

and

JA'IF(x,y) L-sup sup t-
(X,y)A#O (A'VA)~

-1 !.:sup [IF(x,y)V IF(x,y)]2,
(x,y)

Y3: = sup Ix'IF(x,y) I,
(x,y)

if the maximum influence a point can have on its own fitted value is of

interest. Hampel (1978) refers to Y3 as the "sel f-influence". Stahel (1981)

calls Y2 the "self-standardized sensitivity", because the estimator's influ-
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ence function is normed by the covariance matrix of the estimator itself.

Y
z

is appropriate if one is chiefly concerned with inferences about B;

A' IF (x,y) is the influence function of the linear function A' B of the esti­
k

mate and (A'VA) 2 is the (asymptotic) standard deviation of A'B. Therefore,

bounding YZ insures that the standardized influence of A'B is below a cer­

tain bound for all A.

Y
3

is appropriate when one is more concerned with estimating the response

surface at the observed x's. Using Y3 rather than YZ leads to more extreme

downweighting of high leverage points; this can be understood intuitively by

noticing that for least-squares estimation where IF(x,y) is proportional to

rx, A'IF(x,y) and x'IF(x,y) are, respectively, linear and quadratic in x.

Thus, the amount of downweighting needed to keep YZ or Y3 bounded is of or­

der IIxll- l , respectively, IIxll-cz.

In practice, we had most success when working with Y3. We judged suc­

cess by the stability of the overall inference, that is, how little infer-

ences were changed by the deletion of one, or a few, influential points. In

what follows, therefore, we present estimators and results developed with a

view to bounding Y
3

= sup Ix'IF(x,y;B) I in the regression case, and the anal­
(x,y)

ogous quantity Y3 = sup Ih'(x)IP(£,x;8) I in the variance estimation case.
(£, x)

We remark that the methods generalize easily to cover the case of bounding

YI or YZ' see e.g. Giltinan (1983).

Our success when estimating E:l with methods that bound Y3 lead us to con­

jecture that bounding Y3 should be tried in other problems as well, e.g. homo­

scedastic regression. This may possibly lead to progress on the "masking

problem" where two or more highly influential points mask each other.

3. Joint influence estimates

For technical convenience, throughout this and the next section it will
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be useful to treat the design points {x.} as if they were a sample from a
1

distribution function H and independent of the disturbancffi{E.}. In practice,
1

our estimators are equally appropriate for fixed and random {x.}, but theor­
1

etical properties are more easily discussed for random design vectors.

In the homoscedastic case, Krasker and Welsch (1982) proposed estimating

S by solving an equation of the type

n
L w(y.,x.)x.(y.-x.'SKW)

i=l 1 1 1 1 1
o (3.1)

where w(y,x) is a non-negative bounded continuous weight function which depends

on y only through the absolute residual, Irl = ly-x'SI/a, and therefore for

symmetrically distributed E gives fisher consistency at the normal model for'

each x in IR P :

E~ W(E,X;S)E = o.

The influence function for the estimator solving (3.1) is given by

If (y,x;S) = w(y,x) M-Ix(y-x'S),
w w

where

y-x'S 2
M = E l w(y x) ( ) x x' J •w ' a

For this class of estimators of S,

Y3 = sup Ix'IFw(y,x;S) I = sup w(y,x) X'M:IX ly-x'sl·
(x,y) (x,y)

(3.2)

Clearly, the quantity Y
3

may be bounded by suitable choice of w. Krasker and

Welsch address the question of choosing w to bound Y3 in an efficient manner.

The weight function which they suggest has the intuitively appealing form:

downweight an observation only if its influence would otherwise exceed the max-

imum allowable influence, else give the observation a full weight of one. That
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is, if Y3 is not to exceed the bound a
3

, then the appropriate weight function

satisfies

w(y,x;e) = Min[l, _x,;3 -1 I
IY (J IX'M w x·

(3.3)

Such a weight function

ual, or high leverage.

will downweight an observation which has a large resid­
y-x'

As discussed in the last section, for fixed I---e-I
(J

w(y,x;e) is of order Ilxll- 2 as Ilxll -+ GO •

We may extend the method of Krasker and Welsch to cover the estimation of

the variance parameter 8 as follows. Consider the class of estimators of 8

obtained by solving an equation of the form

n ~ A 2
I w(y.,r.;S)[(e:.(S)) -l]h(x.) = 0

. 1 1. 1. 1. 1.
1.=

(3.4)

where w is a bounded, continuous non-negative weight function, depending on

y only through the residual E(8) = (y-T)exp[-h'(x)8]. The influence function

for e is given by

IF (y,T;e)
w

where

-1 2= w(y,T;8) M h(x)(s -1)
w

(3.5)

M = E{W(S,T) (E 2_l)2 h(x)h'(x)}.
w

Thus, for this class of estimators of e,

Y3 = sup Ih'(x)IF (E,x;e)1 = sup h'(X)M- l h(x)w(E,x)IE2-ll.w w(s,x) (E,X)

By analogy to the homoscedastic regression case, if one wishes to choose w

subject to a bound a3 on Y3, then a reasonable choice of w is as follows:

(3.6)
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The similarity with (3.3) is clear. It may be shown that under normality

of E:,

M = Erg ( a~l ) h(X)h'(x)l
w ~ h'(x)M hex) 'J

w

where g(u): = E!p[Minlz2-ll,u] Iz
2
-ll.

(3.7)

The methods suggested above may be combined into a single estimation pro-

cedure, the details for which are given in the appendix. Since the goal has

been to bound influence simultaneously over the design and the residuals, we

call this a joint influence estimate. For the power model (1.1) applied to

the glucose data, the joint influence estimate of A changed only from 0.84 to

0.87 with the deletion of observation 31. If observation 31 is included, then

its weight (3.6) equals 0.07, strongly supporting Leurgans' deletion of the

point.

4. Separate influence estimates

A second approach which we have found useful in estimating e is to han-

dIe high leverage points and outliers separately. We do this by adapting

an idea of Mallows, see Krasker and Welsch (1982). Specifically, if the

mean T. = x~B were known, then a Mallows-type estimator for e would solve
1 1

n ( (y.-T.))\ 1 1
l h.w(h·)x x = 0,

i=l 1 1 exp(h~e)
1

(4.1)

where h. = h (x.), 0 ~ w(h.) ~ 1 is a weight function and X(.) is an even function
111

with mean zero. If w(h.) = 1 and XCv) =v2_l, the solution to (4.1) is the max­
1

imum likelihood estimate. The influence function for e solving (4.1) is

where Mw = E [w (h) h h' ].
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The asymptotic covariance of 8 is

where

N =[Ew 2(h)hh' ],
w

so that the self-influence is

Y3 = sUPlh'IF(E,X,8)1 = sup h,~lh sup X(E)/E{EX (E)} .
X E

Note that both the covariance matrix and the self-influence are products of

functions of (h,w) and (E:,X). To bound the self-influence efficiently, we

follow the approach of Maronna, Bustos and Yohai (1979) in the homoscedastic

case and split the problem into two parts, minimizing

M-1N M- l and EX 2(E)/{EE:X(E:)}2
w w w

subject to bounds on

sup h(x)'M:lh(X) and sup X(E:)/E{E:X(E:)},
x E:

respectively. By analogy with the previous section, we suggest choosing

-1w(x) = Min[l,a/x'M x],
w

where

M
w

-1E{Min[l,a/x'Mw x] x x'}

and in practice we estimate Mw by solving

M
w

N
n- l L Min[l,a/x~M-lx.] x.x~

i=l 1 w 1 1 1

The estimated design weights are

w. = w(x.) = Min[l,a/x!M-lx.].
1 1 1 W 1

(4.2)
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The effect of large residuals may be controlled by choice of the function X ­

2one possibility is to take X(o) = $k(o)-~, where $k is a Huber psi-function

and ~ is a constant chosen to give consistency at the normal model.

The techniques described in this section may be combined to obtain a

bounded influence estimate for (8,8); see the appendix for details. A

descriptive term for the process is separate influence estimates. Since the

weights (4.2) depend only on the design, they serve mostly as an indicator

of leverage in the values {h(x.)}. We have had moderate success with the
1

following indicator of large residuals:

A

$(r. )/r., r. = (y. -x~ 8 )/exp(h' (x. )8),
111 IIp 1

where $(0) is the Huber function

$(X) = max(-c,min(x,c)),

(4.3)

(4.4)

and 8
p

is a preliminary estimate of 8 as in the appendix. When applied to

the glucose data, the separate influence estimate of A in (1.1) changed

only from 0.83 to 0.90 with the deletion of observation 31. The design

weight (4.2) was 0.46, with residual weight (4.3) given by .364.

The choice of tuning constants "a" in (4.2) and "c" in (4.4) is up to

the user. We generally vary these constants, using smaller values for diag-

nostic purposes and larger values for inference. In this paper, to save

space, we have chosen fixed values which represent a compromise between

the two goals.
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5. Examples

(1) Glucose data: Table 5.1 summarizes the parameter estimates for the

Leurgans data set, obtained by each of the four methods described above. The

gain in stability of the parameter estimates by using bounded influence meth­

ods is evident from the table. The price exacted is that robust estimators

are asymptotically less efficient at the normal model. While in this ex­

ample the robust methods do seem to have higher estimated standard errors

for the full data, with the outlier included, they are probably better than

the optimistic GLS estimates.

Since predicting Y from X is a primary concern for these data, the

widths of prediction intervals are of interest. We therefore computed such

prediction intervals for a mean at various values in the range of ~, using

each of the four methods, and investigated the change upon deleting observa­

tion #31. The results are summarized in Table 5.2, which gives ratios of

confidence interval lengths for different values of X for the respective

estimation methods.

Again, the gain in stability by using hounded influence methods is ob­

vious from Table 5.2 The stahility is obtained at a cost - the prediction

interval lengths for the joint and separate influence methods show an increase

typically of about 10-16% over those obtained by maximum likelihood methods,

when operating on the reduced data. This is, of course, in agreement with

what is known to happen exactly at the normal error model.

Both the joint and separate influence procedures downweighted observa­

tion #31 considerably in the full data set. In this example, our attention

had already been drawn to the point; however, sometimes the weights provided

by the bounded influence methods are a useful diagnostic tool in drawing our

attention to previously unsuspected influential points. This is illustrated

by our next example.
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(2) Gas vapor data: Our second example is taken from Weisberg (1980,

page 146). The data are concerned with the amount of gas vapor emitted into

the atmosphere when gasoline is pumped into a tank. In a laboratory experi-

ment to investigate this, a sequence of 32 experimental fills was carried

out. Four variables were thought to be relevant for predicting Y, the quan-

tity of emitted hydrocarbons:

Xl = the initial tank temperature, in OF

x = the temperature of the dispensed gasoline, in OF
2

x = the initial vapor pressure in the tank, in psi
3

x4 = the vapor pressure of the dispensed gasoline, in psi

This data set has been used by Cook and Weisberg (1983) to illustrate their

proposed score test for heteroscedasticity. They found definite evidence of

heteroscedasticity, with the variance being a function of Xl and x
4

' and ob­

tained this empirical estimate of the direction in which the variance is in-

creasing:

Xs = 0.778 + .110 Xl - 1.432 x4 .

A plot of the residuals from fitting the ordinary least squares model against

Xs shows obvious heteroscedasticit.y. We used a power model for the variance:

Acr. = crlxs.+ 0.51 ' (5.1)
1 1

adding 0.5 to make xSi+ 0.5 ~ 0 in all observations, and analyzed the data

using our three-stage estimation procedure. We employed the same four esti-

mation techniques as in the previous example. All the discussion will focus

on estimation of A, although the estimation of B after appropriate weighting

is interesting and nontrivial.
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Table 5.3 summarizes the estimates of A and associated standard errors,

provided by the different estimation methods. For these data, Cook and Weis­

berg note that for unweighted least squares there are no unduly influential

cases. Upon performing the initial analyses on the full data, we thus were

surprised at the disparity in the estimate of A provided by the different

techniques. It turns out that least squares estimation of S and generalized

least squares estimation of A operate entirely differently. Closer examina­

tion reveals that the bounded influence methods downweighted observations

#1 and #2 considerably in the estimation of A, while giving close

to full weight to all other data (see Table 5.3). This suggests that these

two points, observation #1 in particular, exert considerable influence in

determining the estimate of A. This is borne out by Table 5.3; the general­

ized least squares estimate, which makes no attempt to control the influence

of observations #1 and #2 in the full data set, changes considerably on

their deletion. 'Dle bounded influence techniques, on the other hand, control

their influence in the full data set and are relatively insensitive to their

deletion.

Again, we find that the bounded influence methods provide credible,

stable estimates at the price of some loss of efficiency. This example

illustrates their use also as a diagnostic method for locating influential

points. We stress that an influential observation is not necessarily 'bad' ­

it may, in fact, be highly informative. We do feel, however, that it is

of value to be able to identify points which are highly influential. The

methods proposed in this article provide one way of doing this, while at

the same time providing the possibility of inference based on the well-known

ideas of M-estimation.
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Upon reflection, we realized that much of the difficulty with observa-

tions #1 and #2 in terms of estimating A is due to the model (5.1). For

the first two observations, x
si

+ 0.5 is very nearly zero so that there is

a huge relative disparity among the values of {xsi+O.s} in the data. Thus

the strong influence of the first two observations on estimating A is some-

what artificial and can be weakened by using xsi+l.O.

This example is a good illustration of the power of our techniques to

provide stable estimation and inference. However, from the view of model-

ling the variances it is somewhat unsatisfactory mainly because we used the

linear combination Xs as given. For example, one might consider an alter­

native variance model

(5.2)

It is not clear how best to adapt our techniques to the model (5.2), and

some care will be necessary. This data set is actually quite a difficult

one for model (5.2). A generalized least squares estimate gives very large

weight to the first two observations, while the likelihood appears to be

unbounded.

6. Conclusion

We have introduced new methods of estimation for heteroscedastic linear

models when the variances are a power of the mean or a single predictor.

These methods are simple adaptations of the ideas of bounded influence re-

gression. The estimation methods should serve as a complement to influence

techniques such as the graphs of Cook and Weisberg (1983) or the deletion

diagnostic ideas of Cook (1985).

•



Table 5.1 Glucose data estimates of A for the model (1.2), with estimated

standard errors in parentheses

Complete
Data

Generalized 0.52
Least Squares (0.18)

Carroll- 0.72
Ruppert (0.19)

Joint Influ- 0.84
ence Method (0.20)

#31 Weight for e .07

#31 Weight for e .04

Separate Influ- 0.83
ence Method (0.21)

#31 Weight for e .46

#31 Weight for 13 .16

e

Reduced
Data

without #31

0.86
(0.17)

0.87
(0.21)

0.87
(0.19)

0.90
(0.20)

Table 5.2 Ratio of length of mean prediction confidence interval for the

reduced glucose data versus the complete glucose data.

Value of x Generalized Carroll- Joint Influ- Separate Influ- .
Least Squares Ruppert ence Method ence Method

60 0.92 LOS 1.00 0.98

100 0.87 0.95 0.96 0.94

180 1.14 1.05 0.99 0.99

260 1.20 1.10 1.00 1.00

380 1.21 1.12 1. 01 1.01



Table 5.3 The Gas Vapor data estimates for A in model (5.1). Estimated

standard errors are in parentheses.

Without Without
Observ. #1 Observ. #2

0.50 0.81
(0.11) (0.18)

0.40 0.90
(0.18) (0.24)

1.03 1.04
(0.25) (0.29)

Full Data

Generalized 0.28
Least Squares (0.09)

Carroll- 0.28
Ruppert (0.14)

Joint Influ- 1.01
ence Method (0.29)

Weight for #1 .00
in e

Weight for #2 .00
in e

Separate Influ- 0.76
ence Method (0.22)

Weight for #1 .02
in e

Weight for #2 .03
in e

.00

0.81
(0.23)

.03

0.84
(0.31)



Appendix Computation of the bounded influence estimates

For completeness, we include here the estimating equations for

the three-stage bounded influence estimates discussed in Sections 3 and 4.

We also outline the algorithm used to compute the three-stage separate influ-

ence estimator of Section 4. A similar algorithm may be used to compute the

joint influence estimator of Section 3. Details are given in Giltinan (1983).

The three-stage joint influence estimator is obtained as follows:

Stage 1:

Solve

n [ a l jI Min I, x (y. -x. '8 )x.
i=l IY'-x. '8 I A . 1 1 P 1

1 1 P ,-1
x x. Ml x.

1. 1.
0"1

o

1 n
- 1:
n i=l

f[ :\ ) x. x. '
'M- 1. 1

X. 1 x.
11,

A

simultaneously for Ml , 0"1 and Sp' where f(u):

an even function satisfying EX(£) = o.

Eq,(Minl zl ,u) Iz and X is

We used X of the form X(o) = ~2(.)
c

function.

Stage 2:

Next solve

2
Eq,~c(z), where ~c is a Huber psi-

n . ~ a 2 j{( Yi - t i ~ 2 }.LMlnl, x -lh(x.)=O
i=l I[ Yi-ti j2.1' A_I leXP[h'(Xi )8]J 1

-_. x -1 h (x.) M
2

h (x. )
1 1

exp[h' (x.) 8J
1



and

A A

for M2 and 8, where t. = x. 'B and g is as above.
IIp

Stage 3:

Form estimated standard deviations, a
i

= exp[h'(xi )8] and repeat

Stage 1, using the transformed variables x~ = x./a., y~ = y./a ..
111 1 1 1

For the three-stage separate influence procedure, the estimating

equations are as follows:

.,

Stage 1: Solve

~l =.!. I Min[1, :11 Jx. x. '
n . 1 'M- 1 1

1= Xi 1 x(

(A. 1)

(A.2)

n

L
i=l

CA.3)

simultaneously for Bp ' Ml and aI' where ~ is a nondecreasing odd function

and X is an even function EX(£) = O. In our applications we used a Huber

psi-function in (A.l) and X as in Huber's proposal 2 in (A.3)

Stage 2: Next solve

n [ aZ jL h(x.)Min 1, x

i=l 1 [h'(x.)M
2
- l h(X.)]

1 1
l- y.-t. ]

X 1 1 = 0
exp[h' (x.) ~)-

1

(A.4)

M =.!. I Minll, a~ 1
2 n i=l L" [h'(X.)M

2
- l h(x.)]]

1 1

h(x.)h'(x.)
1 1

(A.5)



...... ......

for e and M2, where t i

Stage 3:

= x. 'a .
1 P

Form estimated standard deviations, a i = exp[h'(xi )8] and repeat

Stage 1, using the transformed variables x~ = x.la. and y~ = y.la
l

. In
1 1 1 .1 1

solving the system (A.l)-(A.3) we first solved (A.2) iteratively to obtain
......

M
I

, using 1 r~ lX.x.' as starting value. We then formed estimated weights,n 1= 1 1

Wli = Min[l, al/(Xi'M~lXi)]' and proceeded to solve (A.l) and (A.3) by means

of an iteratively reweighted least squares algorithm similar to that described

in Huber (1981, pages 183-186). The equation (A.S) may be solved in a man-

ner similar to (A.Z), and estimated weights for the second stage computed.

In solving (A.4) we used subroutine ZXGSN in the IMSL library and assumed

that A was in the interval (-2,Z).

The truncation values aI' a2 and a3 in the estimating equations still

need to be specified. The matrix Ml satisfies

Ml = E Min [1, a~ 1 Jx x' ,
x'M x

1

whence it follows that

Taking traces across this equation:

so that, if (A.2) is to have a solution, a l must exceed p. Similarly, q is

a lower bound for a
Z

We have had good success in setting the truncation

values at one-and-a-half times the lower bound, and the results reported in·



Section 5 above used this cutoff value.

For the separate inference estimation procedure, formal influence cal-

culations, given in detail in Giltinan (J983), yield the following expression

for the influence function of the final estimate of B:

IF (x,y; B) = M- l x Min[l a3 J ljJ(y-x'B)
3 '-1 J ·x ' M3

x E 1jJ(E:)

The asymptotic covariance matrix of B is given by

A

Var[1il (B-B)] =

2where N3 = E w3(x) x x' .

In estimating the covariance matrix, we estimated M3 by M3, N3 by N3 =

-nl Lw2
3oXox. I, and the scalar quantity EIjJ2(E:)/E2~(E:) by l I 1jJ2(eo)/[! L~(e.)]2,
III n 1 n 1

where eo = y~ - x~'B, multiplying in practice by a finite-sample correction
III

factor:

- compare with Carroll and Ruppert (1982), or Huber (1981. page 173).

Another approach to computing standard errors might be to use the boot-

strap. While this is a reasonable possibility, at this point it is not clear

how best to implement bootstrapping in the presence of outliers and high

leverage points. Future work in this area is clearly needed.

The influence function for e is given by

'tf r: y-x'S ::]
IF(x,y;e) = M;lh(x) Min[l' a2_

1
]:.LexP[~'(X)el..L

h'(x)M2 hex) E(EX(E:))

. and thus e has asymptotic covariance matrix given by

A

Var[1n (e-e)] = E[IF(x,y;e) IF'(x,y;e)]

..



, where N2
2

= Ew 2{h(x))h(x)h'(x).

"-

•

This may be estimated in a fashion quite analogous to that used to estimate

the asymptotic covariance matrix of S. Full details may be found in Gi1tinan

(1983) •
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