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ABSTRACT

In a given population ~ suppose that student i studies a subset &j of

the subjects offered in a curriculum and that marks or assessment scores {Xij=

i E ~j} are given reflecting the (relative) achievements of the candidature ~j

of the students taking subject j. Various estimates of scale parameters {3j}

in the one-factor model

OJ + ,BjXij :: 'Yij = Vi + eij

for uncorrelated error variables {eij} are examined for unbiasedness: those

based on a method of moments approach appear to be asymptotically optimal.

Further, for the range of values of var(vi) and var(eij) encountered 1I1

practice, the same estimators are fairly robust against the two-factor modrl

'Y" - v + ",. v + e'IJ - i! Ij i2 ij
in which verbal/quantitative contrast factor measures {v i2 } supplement the

general factors {v i1} , whi Ie the sizes of the resi duals {ej j} are then close to

the known sizes of the measurement errors they incorporate.

IPermanent address: Statistics Dept. (lAS), Australian National University, G.p.a. Box 4, Canberra
A.C.T. 2GOI, Australia.



1 Introduction

This paper is a sequel to an earlier joint work (Daley and Seneta, 1986), referred to

below as (I), in which a one-factor model was proposed to describe a data set {Xi}

such as the examination marks obtained by students at the Year 12 level at which they

complete their secondary schooling and seek entry to a tertiary institution on the basis of

their exam. marks as their academic record. \Vithin the several systems operating in

Australasia, such data sets have for some one to two decades been the source for the

prime or even sole determinant of entry to university or college of advanced education.

The earlier paper and this are concerned with examining the basis for such determination

which, for all that it has been accepted at large, is neither well understood nor

administered with the degree of impartiality and sophistication that might be hoped for.

This is said because the analyses that follow from the discussion below lead to the

conclusion that, if the existing procedures were brought into line with what is being

attempted, then for admission to some tertiary level courses, proportions of up to some

10 to 20 or even 30 per cent. of students who at present gain admission '''''ould be

replaced by others. Unquestionably, existing procedures are technically sloppy: worse.

the sloppiness exists to an extent that there are observable consequences of appreciable

size. However, it would be wrong to attach blame to some authorities, because the

technical sloppiness has first to be exposed, and that in part is what this paper is about.

The data set {Xi} need not necessarily consist simply of e.'xamination marks. For

example, the marks or scores may arise from school-based assessments, or from a combi­

nation of them with exam. marks, or from reference test scores such as Aptitude t(':"ts

(e.g. SAT scores in USA or Australian Scholastic Aptitude Test scores). It will be

convenient to call all such measures scores or marks, and to call the "subjrct" or

"course" area from which they are derived a subject or course, even though there may

110t necessarily be a uniform and precisely defined "subject" for the individuals i giw!1

scores X.. in the subject or course j .
lJ
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The dominant issues in this paper are the consequences of estimating parameters

(a., fj.) in the linear transformation
J J

y .. = a'· + p.X..
1J J J IJ

and the resultant properties of the average score

Y. = ave.(Y.. )I . I IJ

(1.1 )

(1.2 )

(formal first and second moment operators like awi(·) are defined around (1.3)-(1.i)

below). In particular we note the different properties of Y i . that arise from a variety

of possible estimation procedures for (aj' Pj) and from a variety of possible model

assumptions for {Y..}.
IJ

The basic notation used here is consistent with that of Daley (1988). The set ~

of all individuals with scores {Xij } is called the candidatufe. In general it will be a suit- e
candidatufe

re. = {i: i has a score X.. }
J IJ

of individuals taking a particular course j , because usually each student i is expeltC'd

to choose only a subset &j from all the subjects &' in the curriculum. 5t udent i has

n· = #(dI) course scores and N. = #(re.) students take course j. Formalmol11C'llts
1 1 J J

are definC'd as in

ave.(X.. ) = E. "' X.. /N. ,
J IJ IE OJ IJ J

[s.d ..(x .. )F = var.(X .. ) = E. "' [X .. - a\·C'.(X .. )F/I\· ,
J IJ J 1J lEo j 1J J IJ J

ave·k(X.. ) = 1:. "'. X.. /N· k 'J'IJ IEojk IJ J'

cov·k(X .. , X'k) = E. "' [X .. - aVC"k(X,,)][X' k - aVC'k·(X·k)]/N· k 'J'IJ I' lEojk IJ J'IJ I' 'J I' J'

where ~jk = ~j n rek I Njk = #( ~jk) I and

(1.3 )

(1 A)

(1.5 )

(1.6 ) e·
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Under (1.1),

ave.('Y.. ) a· + ,B.ave.(X..) ,
J IJ J J J IJ

var .(Y.. ) - ,a7var .(X.. ) .
J IJ J J IJ

(1.i)

(1.8)

(1.9 )

A major aim here is to elucidate what is entailed in basing ranking decisions on

statistics like (cf. (1.2))

Y. =~. _U'.Y.. /n.
l' JEGli IJ 1

or more generally. for some subset d.' of d/. that ma.v depend on {Y..: J' E d/.} .
• . 1 1 1J I

y~' =~. _uti 1'.. /#( d.') .
1. JE Gl i IJ 1

(1.10)

(1.11)

\\'hether it is specifically stated or not, Australasian practice has reflected as an act of

faith that, no matter what scaling procedure has been used. a representation of the form

1'.. = v. + e··
IJ 1 IJ

(1.12)

then holds for certain error terms eij with zero mean. and that this is a valid unbiased

representation. If this is so, then

1".' = v. + e t
.'

1 • 1 1
(1.13)

for some error term ei' that does not necessarily have zero mean but does haw smaller

variance than (almost all) eij . Empirically, a representation such as (1.12) does hold as

a crude first approximation, implying that, when a recipe such as at (1.11) is follm\"('(\.

the representation at (1.13) necessarily holds in this crudr sensr. Because of thi~

implication, it follows that when the paramrter Vi in (1.12) is replaced by an est imat e.

unbiasedness of that estimate will be a highly desirable property.
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There is an important practical reason for considering linear transformations such e
as at (1.1), relating to an invariance property of rankings as at (1.10) and (1.11). It is

simply this, that if {(O'j' (Jj)' vi} as in (1.1) and (1.12) are replaced by

{( a!, (J!), v!} :: {(A + a.B, (J.B), A + Bv.}
J J 1 J J 1

for any real A and real positive B, so that in place of Yij we should have

Y!. = A + G.B + {J.BX.. = A + BY.. ,
lJ J J lJ lJ

(1.14)

(1.15)

the ranking as follows from (1.10) or (1.11) is unchanged, and the implication that (1.13)

holds is likevdse unchanged.

e·
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2 One-factor model

Whether unknowingly or explicitly as reported for example in Daley (1987) and

Seneta (1987), existing Australasian mark-scaling procedures are based on an assumption

that the one-factor model as in (I) provides a satisfactory description of the scores {X..}
lJ

concerned. The linearly transformed scores Yij as at (1.1), or more generally the

transforms f.(X .. ) for some family of monotonic increasing functions f.(·) , are
J lJ' J

assumed to have the structure

y .. = v. + e..
lJ 1 lJ

(2.1 )

for some unknown common (achievement) measure Vi and residual error terms eij that

may embody both model-fit and measurement errors, such that, when viewed as random

variables (r.v.s), the set {eij : i E lS'j} has

E(e.. ) = 0, Var(e.. )
lJ IJ

')

(J: ,

J
(2.2)

and is independent of both {\) and sets {C'ik} for k *j. (The use of Yar(·) as

distinct from e.g. var.(·) is deliberate.) From these assumptions it follows that
J

Ave.(Y.. ) a\'C.(v.) , (2.3)
J lJ J 1

Var .(Yo.) - var.(v.) + d? , (2,4 )
J lJ J 1 J

Cov·k(e.. , e· k) o, (2.5)
J' lJ l'

E(cov.(v., eoo )) - 0, (2.G)
J 1 lJ

Cov·k(Yo., Y· k) = varjk(\) . ('1 -)_.1
J' lJ I'
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3 Estimation In the one-factor model

The concern of this section is with the following questions:

If random variables {Xij} are such that {Yij} :: {Q'j + .BjXi) satisfy the

assumptions of section 2, what estimators of {( OJ' .Bj ), vi} might be used, and

what are their properties?

3.1 Maximum likelihood estimation

Suppose additionally, only in this sub-section, that the LV.S eij are independently

and normally distributed like N(O,~) LV.S. Then the likelihood of the data set {X..}
J IJ

is well--<1efined by

L:: n n (o.J1T.)-lexp[- (0. + .B.X.. - v.)2/2o~] .
j E if i E ~j J J J lJ I J

Suppose that for one particular j we have (0., /3.) = (0, 1) and v. = X'" Then the
J J I IJ

term exp[·] in (3.1) is identically one for this j, irrespective of oj, and L is

maximized bv set tin b
C1 o~ = 0 and takes the value L = 00 •• J

In comparison with the three other estimators from (I), the assumption of normal-

ity in order to have an expression for L is unnecessarily strong. Also, as in (1). it is

unreasonable to assume that oj = 0 for any j. Accordingly, this approach will be

considered no further here.

3.2 Least squares estimation

It is frequently the case that there are close connections bet ween lea.<;t squares and

IJlaximum likelihood estimators. Accordingly, in reverting to the general onC'-faetor

model assumptions as outlined earlier without any a;;sumptions of normality. we start by

seeking estimators via the minimization of

e·
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82 :: ~ ~ (Y.. - v.)2 = ~ ~ (Q'. + .B.X.. - v.)2 .
j E &' i E ~j IJ 1 j E &' i E ~j J J 1J 1

Inspection shows that 82 is minimized with the value 0 by setting Q'. = !J. = v. = 0
J J 1

for all j E &' and i E ~j' Now the only conceivable boundary condition involving these

parameters concerns the positivity of .Bj , so we can expect that any other minimum of

82 will be a solution {(aj , 0), vi} of the least squares normal equations

v. = ~. _~ (a. + b.X.. )/n. :: ave.(a. + b.X.. ) = ave.(Yoo),
1 .IE Wi J J 1J 1 1 J J 1J 1 IJ

(3.3)

a. + b.ave.(X.. )
J J J 1.1

ave.(v.) ,
J 1

(3..1 )

b.var.(Xoo) = cov.(v., X.. ) .
.I J IJ J 1 1J

(3.5 )

Given any non-trivial solution {(aj , bj ), Vi} , inspection shows that for any real A and

real positive B, the set {(A + Ba., Bb.), A + Bv.} is also a solution. The all-zero
J J 1

solution is included in this set at the point (A, B) = (0,0) .

Suppose without loss of generality that the data set {Xi} is generated by the

model

x.. = v· + eoo ,
1.1 1 1.1

(3.G)

and that the set {(aj , o), Vi} satisfies the equations (3.3)-(3.5) with (as' 1\) = (0. 1)

for some s (this last condition simply determines valucs of the parameters A, B within

the class of solutions of the equations). Observe that the model quantitics have (oj' J3j )

= (0, 1) for all j: we shall show that in general we cannot expcct the lcast squarcs cst im­

ators to have these values as their long-run average valucs, and thcrcby concludc that

the least squares estimators {(aj , OJ)' vi} are in general biased. (3. j)

Start by assuming that all Nj are sufficiently large for the strong law of large

numbers to hold, so that
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ave.(X.. )
J 1J

(3.8)

Then, corrcct to terms that are 0p(l) in N. ,

v. - ave.(a. + o.X.. ) = ave.(a. + o.(v. + eoo))
1 1 J J 1J 1 J J 1 1J

- ave.(a.) + v.ave.(o.) + ave.(o.eoo) ,
1 J 1 1 J 1 J 1J

Var(v.) = 0(1) + 0(1) + ave.(D?o-?) ,
1 1 J .1

(3.9)

In practice, there is interest in finding transformations that satisfy one of the t\\·o

sets of constraints:

[1] {X.} = {V. } for some particular subject s, equivalently, (0".;3,.) = (0.1):
IS IS " "

[2] ~. E. (X .. - Yoo) = 0 = E. E. (X? - y?) , equivalentlY .
.1 I 1.1 1.1 .1 1 1.1 1.1 •.

E . _,; N. a v e .(X.. ) ~ . _,; t\. a v e .(Y .. )
X (X) JEw .1 .1 1.1 = .IE (21 ) J 1.1 \. (3 10)

:: aWall ij:: t jEd' t\j ~ jEd' :\j - .

and

var ll(X,,) -a 1.1

=

E. E. (X .. - X)2 E. _,;t\.[var.(X .. ) + (avc.(X .. ) -:x f].1 1 1.1 • • _ .IE (21 .1 .1 1.1 .1 1.1 ••
t' 1\' - )' 1\'

.... jEd'l'j --jEd'l'j

E. _,; N.[var .(Y.. ) + (a ve· (Yoo) - Y f]
JE (21 J J 1J .1 1J • • (\' ) (3 11)

t jEd' N
j

- varall ij' ..

Either of these sets of constraints leads to sceking solutions {(aj' E). \) of a modified

set of equations. In the case of [1] for example, we should scek to minimize

(3.12) e·
for Lagrangian multipliers ).1').2' leading to equations (3.3)-(3.5) a$ aoo\'(\ for j # s
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while for j = s we have instead

DSvar (X' s) + A2 = cov (v., X. ) .S Ie S I IS

In view of the assumed identity (as' /3s) = (0, 1) , these yield

A2 = CO\·s(v., X' s) - vars(X· s) ,e I Ie Ie

(3.13)

(3.1~ )

which with the other equations at (3.3)-(3.5) yield a set of 2#( dIj + #( <6) linear equa-

tions in as many unknowns. In what follows, it is assumed that this set has a unique

solution (d. (I)). Observe that the convergence of any iterative routine for solving the

equations is prima facie evidence for the existence though not necessarily the uniqueness

of a solution.

The identities that follow from a similar treatment of the constraints at [2] are

more suggestive because the\' can be \"'ritten (with X . = a\·e.(Xoo)) in the forms
~,~ • .J J IJ

~.N.[a.+(/3.-1)X.] = 0,
J J J J 'J

~. 1\.[($7 -l)var.(Xoo) + (a. + {3.X ·f - X2 .] = 0,
J J J J IJ J J' J .J

(3.15 )

(3.16)

from which we may anticipate that if the scores Xij satisfy (3.6) with 8\'('all(\) = 0,

then when ni ~ n independent of i and Vi ' both

~. N.({3. - 1) ~ 0
J J J

and ~. ({3. - 1) ~ O.
J J

(3.17)

The expression to be minimized, with Lagrangian parameters Al and A2 , is now

S2 + 2AI~' N.[a. + (/3. -l)X .J + A2~' N·[Uf: -1)var.(Xoo) + (n. + /3.X .)2 - X2.] .
J J J J .J J J J J IJ J J'J .J

The resulting normal equations can be written in the form

•
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ra. + O.X . - ave.(v.)] + -\] + -\2[a· + O.X .J = 0,LaJ J' J J I J J' J
(3.18)

E. ~ x. ·ra. + b.x.. - v.] + -\]N.X . + -\2N ·ro·var .(X.. ) + X .(a. + b.X .)] = 0, (3.19)
IE {;) j lJ J J lJ I J ' J J J J lJ ' J J J' J

or equivalently, for each j E if,

(l + -\2)b.var.(X.. ) = cov.(v., X.. ) .
J J]J J I IJ

(3.18)'

(3.19)'

Compare the Lagrangian multipliers here with the particular solution as below (3.5) with

\"hat now follows amplifies remarks2 in (I) concerning the relative sizes of the least

squares (L5) estimators OJ of .Bj . Assume without loss of generality that the relations

(3.6) hold and that L5 estimators {(aj , OJ), \) have been determined satisfying e
(3.3)-(3.5) subject to the constraints (3.10) and (3.11). What then is

E(Y.. ) = E(a. + o.X.. ) = E(a.) + E(o. )v. ?
1J J J 1.1 .1 .1 1

Ob.scr\'(' that for large !\j'

var.(X.. ) :::: var.(v.) + CT~,
.1 1.1 .1 I J

CO\·.(V., X ..)
J 1 1.1 COVj[EkE&i (ak + DkXik)/ni , Xij ]

- COVj[EkE&i (ak + 0kvi + 0k<'ik)/ni , vi + eiJ

:::: ave.(ave.(ok))var.(v.) + D·li-/n
J I' J I J .1

whrre lin - aveall(l/ni). Consequently,

(3.20)

2r-.1asters and Beswick (I986), in quoting remarks from (I) about least squares estimators
at their §2.49, erroneously inferred that they apply to mNhod-{)f-momellt estimators.

4

e·
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where

f. = var .(v.)/ c?: .
J J 1 J

(3.21 )

In practice, cO\'.(v., X.. ) > 0 so 1 + A2 > 0, n:::: 5 ,and f.:::: 3 to 6. 1\oting that
J 1 lJ J

E(o) = 1 for unbiased OJ' we ask how much does OJ then differ from 1? Consider

two sccnarios. First, suppose the iterated average in (3.20) equals 1; this requires

1 + A2 :::: 5/6 and the range for OJ' which is then a function of f j , is about 0.9G to

1.07. For the second scenario, noting that it tends to be the casc that students have

more courses with f k in conm10n, and hence Ok in common, replace the double

awrage by (1 + 0j)/2 ; using 1 + A2 :::: 5/6 again, OJ is now about 0.92 to 1.14. In

either case. the assertion at (3.7) is supported. and it is supported more strongly by the

example im'olving what appear to be the more realistic approximations.

3.3 Estimation via mean and variance equating

Suppose given just two sets of scores, {X iO } and {XiI} say. and suppose that

the latter set is such that. after some unknown linear transformation as at (1.1). the

resulting scores {Y· I } have the same structure (3.G) as {X· O} with \,ar(\:·O - v.) =1 1) 1

Var(Yil - \) for all i. In this bivariatc context, the following estimation procedure i~

asymptotically appropriate, remaining so in the multivariate' context prol'idcd that the

variance terms oj are constant for all j, a condition which is 110t mrt in practice.

Notwithstanding the absence of such justification in terms of consistency with any

model, it has been common practice to use as estimators of {(fl .. ;3.). v.} th(' attempted
J J 1

"solution" to the set of equations

v. = ave. (a .+ 1) .x..) ,
1 1 J J 1J

- - .1 -
1). = [var.("v.)/var.(X.. )p = s.d .. (\".)/s.d .. (\: .. ),

J J 1 J 1J J J J 1J

(3.:?~)

(3.:?3)
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a. + 1>.X . = ave.(v.).
J J'J J 1

(3.24 )

Both in theory and in practice, these equations when iterated converge to the degenerate

(null) solution because the ratio at (3.23) is < 1 . This inconsistency has been resolYed

in practice by fixing the estimated scale parameters 1>j after one or two iterations and

determining 8j for such fixed 1>j' In view of the invariance properties around (1.14)

and (3.5), an alternative is to impose one of the sets of conditions at [1] and [2] abO\·e.

Provided now that both d? and var .(v.) are independent of j, the procedure is
J J 1

consistent with the model as outlined. To see this, observe as earlier that if any

consistent non-degenerate solution of these equations exists, then a family of such

solutions will exist consistent with the invariance property already noted.

I\ext, suppose as earlier that the data set is generated as at (3.6). Then for

E(Y.. ) _ E(a.) + E(1). )v.
IJ J J 1

it again suffices to consider just the scale parameter estimator. For large I\j' much as

in Section 3.2, (3.9) holds while

Consequently,

(3.:2.))

and, as in the previous section, 1> j again varies with f j , and in general is

asymptotically biased on each side of 1. However, the bia..c; is about half that of using

LS estimators, so this method is preferable to LS estimation.

...

e·
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3.4 Method of Moments estimation

Refer back to the equations (2.2)-(2.7) where it was noted that, when (2.1) holds,

E(a. + ,B.ave.(X.. )) - ave.(v.),
J J J IJ J 1

E(,B\ar .(X.. )) = var .(v.) + i? ,
J J IJ J 1 J

furthermore, from v.(o. + ,B.X.. ) = v? + v·e.. we have
1 J J IJ 1 1 IJ

E(,B.cov.(v., X.. )) = var.(v.).
J J 1 IJ J 1

(3.2G)

(3.27)

(3.28)

(3.29)

~1ethod of moment estimation entails replacing the unknown parameters in (3.26)-(3.29)

by their estimators {(aj , b/ '\) say, and solving for them. Again, since as earlier the

equations are no longer linear in the unknowns, an iterative solution scheme is adopted.

of which a more extended account with a particular data set has been detailed in Daley

(1987). For this, it is not necessary to use (3.27) other than to estimate oj after finding

all the other parameters, that is, the method of moment estimators {(a" b,). v.} satisfyJ J. 1

Ute equations

a. + b.ave.(X.. )
J J J IJ

ave.(v.) ,
J I

(3.30)

b.COV.(V., X.. ) = var.(v.),
J J 1 IJ J I

while the (biased) estimator 'S'j of oj is then giv('n by

'S'? = b?var.(X .. ) - var.(v.) .
J J J IJ J I

(3.31)

(3,3~)

(3.3:3)

III practice, initial estimates such as (OJ' ,Bj) = (0, 1) arC' takC'n and succC'ssi\'rly itNatrd

through (3.32), (3.31), and (3.30), as a pert.urbation analysis shows that undrr th(' condi­

tions usually encountered, such a scheme then has sat isfartory convergrnce propert irs.
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To study the bias properties of the estimators of {.B} it again entails no loss of

generality to assume that (3.6) holds. Then, asymptotically as before,

~ ave}[avei(l\)]2}var/vi) + avej[avei(b~(iV]/n , (3.34)

CO\}vi, Xij ) = covj [l:kE &j (ak + bkXik)/n i, Xij]

= COVj[~kE&j (ak + I)kvi + bkC'ik)/ni, vi + C'ij]

Thus.

I). ~
J

ave.[ave.(bk)]var.(v.) + I).£i./n .J ). J) J J

ave.[an>.(b )]2var .(v.) + ave.[ave. (1)2(i2)]/n
J ) k J) J) kk

ave.[aw.(bk)]var.(v.) + I).(i~/nJ ). J) J J

(3.3.5 )

(3.36)

which is closer to being unbiased than either of the two previous estimators. In

Particular. it is much less affected bv variabilit v of r .. Kote also that• • J

Var(vi) = var[EkE&j (ak + bkVi + bkE'ik)/ni]

~ var[~kE&'i (ak + I)k\)/ni] + ~kE&j b~(TUnI

(3.37)

3.5 External reference measure

Suppose finally that a further set of scores {t-.} is provided as estimators of
)

(3.38)

where E(eiy ) = 0, E(eIy) = (i~, cov(vi, eiV ) = O. It. has b('('n common in the

educational measurement literature to use {~. }
)

for "reference score equating" by
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requiring that

ave.('Y.. ) = ave.('~.),
j Ij j 1

var.(Y..) = var(V
1
·) ,

j Ij
(3.39)

in spite of its being known that biased estimators of the scale parameter /J then ensue
j

(see e.g. Cooney (l9i4, 19ii), Hasofer (19i7), and Potthoff (1982)), largely as a result it

would appear that a model such as (2.1) was not in view, and in particular there was no

suggestion of an approach via the estimation of vi' In view of the model assumptions,

equations (3.39) are equivalent to assuming that oj = o~, for each j concerned. This

assumption is similar to that of the mean and variance equating estimation procedure

already outlined. On the one hand, it recognizes that both sets of scores {X.. } and
IJ

{"~) arc subject to error (i.e., imprecise determination), whether coming from model-

fit ting or actual measurement or both. On the other hand, it assumes that these errors

are of the same size for all scores, whether from courses or the reference test, when in

pract ice these are known to vary considerably (d. the range 3 to 6 for f.: for
J

evidence, see Daley (1985) and Daley and Eyland (198i)).

is largr.

Obserw also that the error variance of the estimator is now proportional to o~I':\·
J

? ? IoJ < 0 \"" al1Crather than ave)ave/oDJln:::: oj/(nJ'~)' and the increases from both

1In < 1 introduce appreciable errors into the estimation of v. unless ~.
1 J

Of even more concern is that estimates of the location parameters OJ are now

prone to bias within the error variables eiV ' Broadly speaking these can lx> regardrd as

cultural biases, as for example concerning ethnicity and gender with SAT scores in l'SA

and of grndrr in both Australia and UK (MATHEF (l9SG) refers to a survry paprr

manuscript of Daley).

3.6 Which estimation procedure?

In terms of precision of estimates, it is unquestionably the case that any of tilt'

other course score procedures of sections 3.2 to 3.4 is preferable to the external reference
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measure procedure of section 3.5. This is a simple consequence of the fact that, if a

parameter v. is estimated by several measures, and a measurement error (or, errors in
1

variables) model is appropriate, then information on the parameter is derived better

from a reasonable combination of all the observations contributing more or less equally

rather than relying on a single set of observations. \Vithin this group of procedures, the

criterion of unbiasedness of the scale parameters {.oj}' which is relevant in the tails of

the distribution of {\) though less critical than unbiasedness of the location para­

meters {OJ} , means the method of moment procedure of section 3.4 is to be preferred.

It is possible in principle to investigate these methods via either or both of Monte

Carlo methods and resampling procedures. The major practical problem associated with

using the former is to construct a data set consistent with both the model and the

pattern of courses ctI taken by students in relation to their general measures v.. One
I I

solution is to use the estimates of both {v) and {oj} from a data set (e.g., as from e
the method of moment procedure), and replace the observed errors by simulated values

{ej} which should then be reasonably independent. For the latter, jack-knife estimates

of Var(\) for example may be appropriate through the use of a common set of

subsamples for different estimation procedures.

The estimation procedures of sections 3.2 to 3.4 can also be used in conjunction

with an external reference measure such as r~i} by regarding the latter as a set of

scores from some course, as for example regarding it as the course s as under tlw

constraint [1] above (3.10). Such a procedure was adopted in the analyses to which brief

reference is made in Chapter 5 of AlA THEF (1986).

The one-factor model and its associated estimation procedures can be used on

subsets of courses when the latter are chosen by some external prescriptive criteria. For

example, ad hoc analyses have been performed on classifying courses j E dI as lying in

either a humanities (verbal) domain or a science and mathematics (qua.ntitative)

domain, and a procedure similar to that of section 3.5 followed within each of the two
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resulting subsets, whereas what has been sketched in section 3.4 would be much more

appropriate. Again, all that is being reflected here is a lack of understanding of the

logical need for any algorithm to be governed by a mathematical model that describes

the context of the information being processed by the algorithm in such a way that,

ideally, the principles underlying the algorithm and its application to the model are

mutually consistent, optimal, and consistent with the data.
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4 One-factor model procedures used on a two-factor model e
It has been assumed so far that the one-factor model is a satisfactory descript ion of

the data in the sense that the sets of residuals {ei} are mutually uncorrelated. (While

we stated an assumption of independence at (2.2), all we have used, except for the

maximum likelihood procedure which we have rejected, is this zero correlation property.)

Since a ranking is a one-dimensional concept and the parameters {\) correspond in a

general sense to a first principal component of the multivariate set {Yij} , i.e., to the

dominant component, it is arguable that at this stage it is enough to check that the

resulting error terms are uncorrelated.

In practice, the data sets are such that a second component is always obsen·able.

and a third is also observable when certain external reference measures are used. It is

therefore proper to consider the one-factor model estimation procedures in relation to

these more detailed models. In this section we consider the following two-factor modrl

which corresponds to the practical observation that many students tend to be relatiYC.'ly

better in one of the two areas defined by a preponderance of verbal skills for one and

quantitative skills for the other. (In more colloquial terms, students tend to be bet ter in

either the humanities area or the science and mathematics area.) Suppose then that we

retain (1.1) but that instead of (2.1) we have

y .. = v' l + "i'v.? + e!.IJ 1 J 1_ IJ (4.1)

for some family of constants {"i'}, general achievement mea$ures {V· I} , contrast
J 1

measures {v ..)}, and residual variables {r~.}, such that over thrir common sub--
1- IJ

candidatures, {viI} and {vi2} are mutually uncorrelated and uncorrelated also with

{e!.}. It is immediately recognizable that, in addition to the indrterminate paramrtrrs
IJ

A ,B as at (1.14) and (1.15) for the model at (2.1), there is anothrr indeterminacy in

the model at (4.1) in that the quantities

description of any data set.

{Ci'}
J

and yirl d the same
e·
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\Ve content ourselves for the time being with observing that if (4.1) holds and we

form the estimator of Y i . at (1.10) by

~. _CP. Y.. /n. = ~. _CP. (v' I + ,.v·2 + e!.)/n.
JE ~ i IJ 1 JE ~ i 1 J 1 IJ 1

- V' I + (~. _CP. ,./n.)v· 2 + (~. _CP. e!./n.)
1 JE~i J J 1 JE~i 1J J

:: V' I +1! Iv·?1 +e! say,1 l' 1_ 1.
(4.2)

then again the dominant component is vi1 out, typically, because a student if anything

tends to have a majority of courses from the area of relative strength in terms of the

contrast measure vi2 , this dominant component is increased by a fraction of the

contrast measure. (It is tacitly being assumed here that the coefficients 'j lie in the

range (-1, 1) or thereabouts, by appropriate choice of the arbitrary constant C.) The

last statement means that, no matter what convention has been adopted with regard to

the sign of vi2 ' each student will tend to have a majority of courses for which '"Tj has

the same sign as v.?' and thus, taking ,! :: I~'E _CP. ,)n·1 = Iave!( '"T') I ,the second
L l' J ~i J 1 1 J

term on the right-hand side of (4.2) is (usually) positive as implied.

The representation (4.2) makes little sense until we have some idea of the magni­

t udc of the quantities involved. Our experience ""ith data from three Australian sourccs

indicates that varall(viI ): varall (vi2 ) ~ 4: 1 or larger, that '"Tj ~ 0.2 to 0.5 , and that

Var(ciJ ~ varall(viI)/IO or less, so that the measures Vi. can certainly be regarded as

providing a classification of the population into several subgroups if that is required.

Questions of misclassification rates have been canvassed in Daley (1988).

A major benefit of having the representation (4.2) is that it C'xplains obsen'cd

covariances covjk(Yij , Yik) better than the one-factor model (2.1). To show this. wc

must make some assumptions that approximate the participation rates of students in

various courses. To this end, assume that every student takes courses j = 1 and 2, these

common courses being one in each of the major areas (e.g. every st udent take.s English
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and Mathematics), that each student then takes three further courses in his area of

strength, and that I'i. ~ 11.0 -1.0 + 3(0.5)1/5 = 0.3. Suppose also that 60% of

students are in the area of course 1 and 40% in the other. (\Ve could equally use 50% in

each: we choose otherwise in order to illustrate effects of imbalance, of which the first is

that the representation at (4.2) must be modified by replacing 'vi2 ' by the top 60% of

v.') for the area of course 1, and the top 40% of - v.') for the area of course 2.)
1_ 1_

We shall suppose that the raw scores X.. have the representation at (4.2), much as we
IJ

made the assumption about /3j = 1 at (3.6) in our study of biases of b j in section 3.

with 'I = -'2 1 for the sake of definiteness. \Ve have

assuming for the sake of argument that the measures {v
i2

} ha\'e the distribution !\(O.

s~) and that the 60% group takes courses 3, 5, and another, and that the 40% group

takes courses 4, 6, and another, we have also

= var3(v'1) + (0.5)2)( var{top 60 % of v.,)} + Var(C'!'3)
1 1_},

- var4(v· 1) + (0.5f )( var(top 40 % of - v.,)) + Var(C'~4)
1 1_ 1

'J
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To investigate the effect of using the method of moment est imation procedure on

the data as though they conform to the one-factor model, consider thr result of

calculation aftrr thr first iterative step:

var1(v· 1) + (0.3)2 x var{top 607< of v.,) and top 40% of - v.,)} + \'al'(r
l
:.)

1 1_ 1_
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COy(\: .. X· 1) = var1(v· 1) + (0.3) x COYl({toP 60% v.') and top 40CX of -v.')}, v..))
) . ) 1 1_ 1_ 1_

COy(X. , X.')) = var1(v· 1) - (0.3) x (0.004s~) + (0.2) x Var(e~')) ,
l' L 1 L

CO\·(X.. X· 3) = var3(v· 1) + (0.15) x cov3(v.'), {top 60% of v.')}) + (0.2) x Var(e~3)
l' ) 1 1_ 1_ 1

A~ t he first iteration approximation to b1 we have the ratio

Assuming that Var(ei) ~ Var(e;I)/5 ~ sV5 and that s~/\'arl(\'i1) ~ 1/5 . this ratio ~

1.007. indicating that the effect of assuming that (4.2) holds with X.. rather than y ..
1J )J

introduces a bias that is smaller than any of the biases considered in connection with

rstima10s of /3j in section 3. Making similar assumptions in COl1llC'ction with th0 01h0r

courses 10ad~ to ratios that are likewise within 1%of 1.00.

..
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Within the simplified course choices and using the typical values ofvariances for the

ratios just considered, the method of moment estimation procedure derived from a one­

factor model produces estimators for the two-factor model that are somewhat smaller than

the bias tcrms canvassed for other course score estimation procedures in section 3.

Accordingly, on ilLese theoretical grounds, the one-factor model constructed via method of

moment estimation produces adct[lUIte estimators even for the two-factor model as above.
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5 Reference test factor

It has long been known (Anastasi (1958) wrote of studies going back as far as 1929)

that the relative performance of mid-teenage boys and girls on standardized tests such as

SAT tests in OSA differs from their relative performance under class-room assessment

practices. Such differences would appear to be culturally based, or if not, a gender-linked

interaction of the psyche with the mode of assessment in that multiple choice tests are

predominantly used in standardized testing but not in most class-room based

assessments. The presence of any such interaction is presumably not a gender trait per

se but merely a gender-linked trait, in which case, if there exist at least two sets of pairs

of assessments that can be regarded as being in similar areas, one from a standardized

test or other multiple choice based test and the other from the classroom, then it should

be possible to discern whether over all individuals it is feasible to postulate an analogue

of (4.1) in the form

Y.. (~.) = v· 1 + i·v.') + b.!:::..+e'.'. (5.1)
IJ J 1 J 1_ J I 1J

where bj = + 1 or - 1 and Doi denotes the relatiw p('rformance of individual i as

measured under two modes of assessment in course j .

Equation (5.1) has the consequence that if for examp1C' courses j = 1 and 2 ha\'C'

'j = + 1 and - 1 respectively, then the four sets of scores {Yi1 (1)}, {Yi1 (-1)}.

{Y..)(l)}, {Y.')(-l)}, yield
1_ 1_

~[Y'l(I) + )'..)(1) + )',1(-1) + Y..)(-1)] = \"1 + (".'(1).
1 L 1 L 1 1

HY'1 (1) - y, 2(1) + 1"1 (-1) - Y")(-1 )] = v' 0) + (' '.' (2) ,
1 1 1 1_ 1_ 1

HY.1(1) + y. ') (1 ) - l' 0 1(-1 ) - )', ') (-1)] = Do. + (' '.' (3) ,
1 L 1 1_ 1 1

HY'1(1) - 1',')(1) - 1"1(-1) + Y..)(-I)] = (".'(4),
1 1_ 1 1_ 1

( ~ .))J._,

(5.-1 )

(5.5 )

•
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where on the assumption that the errors e~' are uncorrelated LV.S with variances (J21 ,
1 •

... (J~ say, the sets of error terms {ej'(r): i = 1, , N} (r = 1, ... , 4) are mutually

uncorrelated with a common variance ta2:: (~ + + (J~)/16. It is clear that some

test of the model (5.1) is effected by forming the four linear contrasts (5.2)-(5 ..5) and

finding their sums of squares, for which the expectations are

Comparison of the observed mean squares with these expected mean squares, and in

particular, that the last mean square is significantly smaller than any of the others. is

evidence that (5.1) holds. Another test is effected by looking at the correlations of the
•

sets of right-hand sides: near-zero correlations constitute additional evidence that (5.1)

holds. being independent of the mean square evidence.

\\'hat is almost unh'ersally reported is that boys and girls differ in their relati\'(>

abilities in the quantitative and verbal skill areas. In a report that admitted to having

been written hastily, Masters and Beswick (1986) suggested and attempted to supply

evidence that the gender-linked difference noted onwards from 1929 is attributable to an

interaction of the relative participation rates of boys and girls in these two areas. This

suggestion can be tested more thoroughly than in Ma.sters and Beswick's analyses by

u:'ing the model (5.1) in the following ways:

(I) Check the analyses based on (5.2)-(5.5) within each sex. If similar second-ordrr

properties are observed then it is evidence that the model (5.1) holds as a

description of the scores of individuals, and that any systematic differences between

subgroups formed on the basis of gender are merely gender-linked effects.

(2) Investigate the gender~ifferenceof the averages of {'Yi/l)} and {'Yi/-l)} for

each of j = 1 and 2. If these gender-ba.'\ed differences are of similar sign and

(better still) size for the two course areas, then it is evidenc(' tbat tlw model-based

averages of b.i within each sex are different. MoreovCf, tbey are not related to

the verbal/quantitative contrast factors {v'I)}. (Such e\"idC'llc(, was supplirc! to
1_
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the Committee that wrote MATHEF (1986) but not reported there.)

(3) Note in particular the correlations between the contrasts (5.3) and (5.4). If the

gender-based differences observed as mode of assessment effects are attributable to

verbal/quantitative contrast factors, then these correlations should differ from

zero.

The presence of the factor {!ii} is of considerable concern for its effects, not only

on the reference score equating procedure of section 3.5, but also when used in conjunct­

ion with any of the other course score estimation procedures of sections 3.2 to 3.4 in

which scores such as rV) at (3.38) are used as the scores of the particular course s for

which (os' ;3s) = (0,1) as at [1] above (3.10). This is particularly so whenever the mean

squares O"~(j):: \'ar/L\) differ considerably from the quantities O"j of (2.2) becamr thr

estimators b· are affected bv the ratioJ •

(.5. i)

So soon as f!:J. (j) is smaller than the general range 3 to 6 for f j as at (3.21).

distortion of the scale estimators b. occurs and biases the contribution of the scores y ..
J lJ

from the courses j concerned. It is therefore appropriate to ensure that any sllb-

populations whose reference test scores are used in order to establish some form of

comparability across groups which otherwise have vacuous common sub-candidaturrs

~jk (j, k 1- s) , have their ratios f!:J. (.) (over the sub-population concerned) within the

range 3 to 6. Put another way, the estimatr of the mean square O'~ within a sllb­

population can br considerably in excess of the purported measurement error associated

with thr refrrencr tcst, and hence indicate a significant presence of mode of assessmrnt

differences {~i}; when Ulis is so, it is essential to consider meUlods 0/ reducing this

obscnJed mean square to the order o/magnitude o/the measurement error so as to comply

with thc fundamental assumption that (9.98) holds with measurement error only.
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