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ABSTRACT

This paper considers transformations in regression to eliminate skewness and

heteroscedasticity of the response. We work with the "transform-both-sides" model where

the relationship between the 'lledian response and the independent varibles has been

identified, at least tentatively. To preserve this relationship, the response and the

regression model are transformed in the same way. Extending the work of others for the

location parameter case, we propose an estimator AS that eliminates skewness. We also
, ,

develop an estimator Ah to eliminate heteroscedasticity and an estimator Ahs that
, A

attempts to induce both symmetry and homoscedasticity. Both Ah and Ahs appear new.
, A

By comparing AS and Ah we develop a test of the null hypothesis that there exists a

transformation to both symmetry and homoscedasticity.

We study the question, when does the estimator of A behaves (in terms of

asymptotic variance) as if the regression parameter 13 were known (and vice versa)? The

results are of use for telling when the optimal estimator of A does not depend upon the

regression model. In addition, we present an example and discuss computation of the

estimators.

Key Words Transform-both-sides, skewness. tests for heteroscedasticity, M~stimation.
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1. INTRODUCTION

Data transformations have long been used to induce symmetrically distributed and

homoscedastic data. In regression problems, the proper transformation could be calculated

if one had sufficient knowledge of the conditional distribution of the response y, given

covariates, x. Without such knowledge the data themselves are used to choose the

transformation. This paper is concerned with estimation of a transformation of y to

symmetry and/or homoscedasticity. It is assumed that a theoretical model relating y to x

is available, and the transformation must not destroy this relationship.

In a fundamental paper, Box and Cox (1964) proposed choosing a transformation

from within a parametric family by the method of maximum likelihood. Let y be a positive

response and let h(y,A) be a transformation of y depending upon the parameter A. For

example,· h could be the modified power transformation family given by

(1.1 ) h(y,A) = y(A) = (yA - 1)/A if A :/= 0,

= log(y)

The Box and Cox assume that for some A

if A -;- o.

(1.2) Th(y,A) = x (3 + at,

where t has a standard normal distribution and xT(3 is a simple linear model. They

estimate A, (3, and a by maximum likelihood. Model (1.2) assumes that the transformation

of y to h(y,A) can achieve three simultaneous objectives: (a) normally distributed errors,

(b) a constant variance, and (c) a simple model (given by xT(3) for the relationship

between the covariates x and the response y.
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A difficulty with model (1.1)-(1.2) is that since y is positive, (; cannot have a

distribution whose support is (-00, (0) unless A is zero. Model (1.1) - (1.2) can be inverted

to

(1.3)

be the ith residual. The estimators studied by Hinkley and Taylor use a measure of
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skewness, for example the usual third-moment skewness coefficient. Then A is defined as
.

the value of A such that this skewness measure of the {€/A)} is zero.

The advantage of the Hinkley and Taylor estimators is that when a transformation

to symmetry does exist, that is, (1.2) holds for some A with € symmetrically distributed.

then these estimators will consistently estimate the correct A. Except when A = 0, the

Box-Cox MLE will not be consistent (Hinkley 1975). In the one-sample location problem,

the estimator based. on the third-moment skewness coefficient is nearly as efficient as the

MLE, but using a quantile-based skewness measure leads to an inefficient, albeit robust,

estimator of A (Taylor 1985). However, when the model is more complex, then these

symmetry~stimatorscan be quite inefficient since they do not use the information about A

coming from the relationship between y(,x) and x or from the mean-variance relationship

of /A).

In this paper, we will be concerned with a problem somewhat different than that

addressed by Box and Cox (1964). Suppose that from a theoretical (e. g. biological or

physical) model or empirical knowledge we have already postulated a relationship between

y and x, say that the median of y given x is

f(x,j3) ,

where f is a possibly nonlinear regression model. If y is skewed and/or heteroscedastic,

then we may wish to transform y, but transforming y alone destroys the postulated model.

y = f(x,j3) + error. In this situation, Carroll and Ruppert (1984) propose "transforming

both sides" of the regression equation, that is, using the model

(1.4) (A) J A)y. = t' (x.,j3) + €"
1 1 1

where €1 ""'€n are i.i.d. F. Model (1.4) has been discussed in detail by Carroll and Ruppert
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(1984, 1987, and 1988), and Snee (1986).

If t is distributed symmetrically about °or merely has median 0, then (1.4) implies

that the median of y given x is f(x,/3), regardless of the value of A. Thus, the value of /\ is

not determined by the conditional median of y given x. Rather, it is the asymmetry and

the mean-variance relationship of y that determines 'A. If (1.4) holds with A = AOand t

symmetrically distributed, then y(A) is right-skewed when A > A
O

and left-skewed when

A < AO' Also, by a Taylor approximation,

(1.5)

In this paper we apply the transform-to-symmetry estimators of Hinkley and

Taylor to the transform-both-sides model, (1.4). We also consider estimators that

transform to homoscedasticity, that is, to a null value of some test for heteroscedasticity.

Finally, we explore the possibility of combining the two approaches to achieve a

transformation to symmetry and homoscedasticity.

It is informative to consider two limiting cases: (1) 0'2(f(xi'/3)) -1O, where 0'2(f(xi,/3))

~s the sample variance of {f(xi'/3): i = 1,... ,n}, and (2) 0' -I 0, where F( . ) = FO( . /0') for

some fixed F0' In case (1) the responses, Y1' become homoscedastic, in fact 1. 1. d., and all

sample information about A comes from the shape of the their distribution. In case (1) the

estimator that transforms to a zero third moment of the residuals is nearly efficient (fully

efficient if A = 0); see theorem l(b) and the remarks following that theorem.

In case (2) the transformation y. -I /A) is nearly linear for fixed x.; therefore //\)
. 1 1 1 1

and Yi have the same distribution except for a location and scale change (the scale change

depends on Xi)' so all sample information about A comes from the heteroscedasticity of the

Yi's. In case (2) the estimator that transforms to a zero value of the score test for

heteroscedasticity is fully efficient; see theorem 4.

e-
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2. TRANSFORMATIONS TO SYMMETRY

In this section we assume that F is symmetric about O. When estimating A we will

re~trJ.ct ourselves to measures of skewness that are M-estimators. This is a large and

t1exible class, yet sufficiently narrow to allow a compact theoretical development. Suppose

we have a sample y1'... ,yn with mean p, and standard deviation (j. Define

A A

z· = (y. - /J)/ (j
1 1

and let ¢ 'be an odd function. Then we can define the II skewness II of y1'''''yn as

If 7/J(Y) = y3, then '7/J is the usual third-moment skewRess coefficient. This choice of 7/J

does not give a robust estimator of A. Taylor (1985) considers other choices of 7/J.

Taylor's (1985) estimator can be generalized to the transform-both-sides model as
A (A) J A) A A

follows. For fixed A, let t:i(A) = Yi - t' (xi'Jj(A)) where ;3(A) is the least-squares
• A A

estimate of;3. Let p,(A) and (j(A) be the mean and standard deviation of {t:.(A)}, and
1

define

(2.1 )

Then /\ is defined by

n
E 7/J{z.(J\)} = o.

. 1 1
1=
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If Aequals AO' the true value of this parameter, then J.t(A) will converge to zero as n ... 00, so

to obtain a consistent estimate of AOit is not necessary to center the f i when defining

zi(A). However, the asymptotic variance of Adepends on whether the zi(A) have mean zero

or not. We have followed Taylor (1985) and centered zi(A) as in (2.1) so that A has a

simply expressed asymptotic variance, in fact, the same asymptotic variance as Taylor

obtained for the location problem; see Theorem 1(b). It would be interesting to know how

greatly the introduction of J.t affects the asymptotic variance, in particular, to establish a

bound of the difference between the asymptotic variance of A with and without J.t. Now let

J.t be the parameter that IJ estimates. Although J.t = 0 now, we are going to reparametrize

so that J.t is not zero.

Now let () = (A, IJ, /3T, u)T be the vector of all parameters. The estimator () defined

above can also be defined as the solution to the following M-estimating equation. Define

Let

e·

(2.2)

and

The superscript "c" is to indicate that the residual has been centered. Having J.t in r~
, 1

allows us to center l/\)(xi'/3) at its mean, which will be convenient later. This

reparametrization affects the value of J.t but does not change the meaning of (3, A, and (7. e
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Define

r f1A) (x,,B)

[(rc)2 - 1]

where f1A)(X,.8) = 8/8.8 t A)(x,.8). The subscript "s" denotes "skewness" estimator and

distinguishes this estimator from later ones. Then (J solves

(2.4)

Note that the uncentered residual appears in the third component of \IIs that is used to

estimate .8, but the centered residuals are used to define the other parameters.

Definition (2.3) can be generalized to include robust estimators. The technique we

will introduce is essentially Mallows's (1975) estimator; see Li (1985). Let the functions '7

and X be odd and even respectively; for robustness both should be bounded. Let w( (J,x) be

a weight function taking values in [0, 1]; for robustness

w( (J,x) f~A)(X,.8)

should be bounded as a function of (J and x. Then replace (2.3) by
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¢(rC
)

TJ(rc)

TJ(r) f~/\)(x,;3) w( fJ,x)

x(rc)

.
and let fJ be the solution to (2.4) with this new definition of W. The parameter (j is no

longer the standard deviation of F but rather is defined as the solution to

J X(f./(j) dF(f.) = 0;

see Huber (1981, section 5.2).

The consistency and asymptotic normality of fJ can be investigated using Huber's

(1967) results on M~timationor related techniques. Here we will simply assume

consistency and asymptotic normality and study the form of the asymptotic variance e .
matrix.

Let fJO be the true value of the parameter fJ. The asymptotic variance matrix of fJ is

v =B-1 A B-T
s s s s '

where

(2.5)

and

(2.6)
n c

Bs = - (a/afJ) E E W (r.(fJO),r.(fJO).x.,fJO).
. 1 S I 1 1
1=
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vs can be consistently estimated by replacing (}O with (} and replacing the expected sums in

(2.5) and (2.6) with their observed values; call this estimator Vs'

If we only wished to estimate Vs' then there would be no need to develop a formula

for Vs' However, we will see that some insight can be gained by examining the form ot Vs'

Now assume that model (1.4) holds with f symmetrically distributed and that () is

asymptotically normal with variance matrix Vs' or more precisely,

Note that the asymptotic variance matrix is actually a sequence of matrices; the n-th

matrix in the sequence is the large-sample theory approximation to the variance of IJ

calculated from the first n observations. Of course, if {xi} is suitably behaved, e. g. an

LLd. sequence, then Vs will be simply n-1 times a constant matrix.

We have the following results.

Theorem 1: (a) (A, (3, J1.) and (j are, in general, asymptotically correlated, but the

asymptotic variance of(A, (3, J1.) is the same as if (j were known and did not need to be

estimated. Therefore we can ignore the nuisance parameter (j and focus attention on the

variance ofP, (3, J.l).

(b) The asymptotic distribution ofP, J.l) is the same as it would be if (3 were known.

In particular, the asymptotic distribution ofP, J.L) is the same as Taylor (1985) obtained for

the location problem.

(c) In general, (3 is asymptotically correlated with (A, J.L) and the asymptotic

distribution of (3 is different than it would be if (/\. J.L) where known.

Since Taylor (1985) has made a detailed study of the choice of1/J, it is very useful to obtain
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the same asymptotic variance so that his conclusions carryover. The proofs of all

theorems are in section 6.

3. TRANSFORMATION TO HOMOSCEDASTICITY

As in section 2, we assume that model (1.4) holds with y(A) given by (1.1). In this

section, however, the distribution F need not be symmetric, but we require that

ET/(f./q) = 0, e. g., if T/{f.) = sign(f.) (T/(f.) = f.) then the median (mean) of f. must be O. If

we transform y to yeA) and estimate {3 and q by least-squares, then by (1.5) we expect the

squared residuals to be positively (negatively) correlated with the fitted values if A > AO

(A < AO)' This suggests using the correlation between the squared residuals and the fitted

values to test if A = AO' and estimating A by the value giving zero correlation. Following

Bickel (1978) we will introduce more general tests for heteroscedasticity.

We will not need the parameter IJ, so define ~ = (A, q, {3). Since riC 8) defined by

(2.2) does not depend on IJ, we now write r.(~) instead of r.(O). Now we also assume that
1 1

;..; does not depend on IJ and write w(~,x).

Let b( . ) be a monotonically increasing function. Define

n
0({3) = n-1 E b[f(x.,{3)]

. 1 11=

and

n
S(L~) = E {b[f(x.,{3)] - o({3)} x[r.(~)].

. 1 1 1
1=

e·
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Bickel (1978) proposed using S to test for heteroscedasticity. We will define il by

simultaneously solving

.
S(il) = 0,

along with equations that estimate (3 and u. More explicitly, let

{b[f(x,(3)] - o(;8)} x(r)

x(r)

11(r) f~A) (x,(3) w(~,x)

Then ~ solves

(3.2)

If (1.5) holds exactly then

n .•
E 'lTh(r.(il),x.,il) = O.

. 1 1 1
1=

as A -l A0-' and so the score test for heteroscedasticity uses b(x) = log(x); see Cook and

Weisberg (1983). This choice of be·) is approximately optimal for small u; see theorem 3.

Now assume that il is consistent and asymptotically normal with asymptotic

. -l-T
vanance Vh = Bh AhBh where

(3.3)
n

Bh = ajail E E 'lTh(r.(il),x.,Ll),
. 1 1 1
1=
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and

(3.4)
n T

Ah = E E Wh(r.(~),x.,~) Wh(r.(~),x·1'~)·. 1 1 1 1
1=

Even when F is asymmetric, ~ is consistent and asymptotically normal with variance Vh"

Howeyer, the form of Vh can be simplified if F is assumed to be symmetric, and, therefore,

we make this assumption for the remainder of this paper.

Theorem 2: (a) In general, (A, 0') and /3 are asymptotically correlated and the asymptotic
.

variance of/3 is different than it would be if(A, 0') were known. However, the asymptotic

variance of(A, 0') is the same as if/3 were known. Therefore, we can focus attention on (A,

(7), ignoring /3.

(b) The asymptotic variance of).. is the same as it would be if 0' were known.

The asymptotic variance of ).. becomes simple under I small-(7" asymptotics where

the scale parameter (7 converges to O. Several authors (for example, Bickel and Doksum

1982 and Carroll and Ruppert 1981, 1984) have applied "small-O'" asymptotics to similar

transformation problems. We will study the asymptotic formula for the variance, Vh' with

n fixed ana (7 converging to O.

Theorem 3: Under smal/-(7 asymptotics,

(a) the asymptotic variance of /3 is the same as it would be if(/\, (7) were known,

(b) the asymptotic variance of).. converges to



15

(3.5)

and

(c) the optimal choice ofb( .) becomes

(3.6)

With this choice ofb(·), (3.5) becomes

b(x) = log(x).

The choice b(x) = log(x) is highly nonrobust, especially because observations with

small predicted values can be very influential. Indeed, it has been our experience with

modeling the variances of heteroscedastic data that such observations are o~ten anomalous.

being more variable than predicted by models fitting the remainder of the data. If

b(x) = log(x) is used, then the data should be carefully scrutinized. Alternatively, b could

be a suitably truncated version of log(x).
. .

Let ~ML = (AML' O'ML' ,BML) be the normal-theory maximum-likelihood

estimator, that is, the estimator that maximizes the likelihood assuming that
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F( . ) = <1>( • /0'). Although this assumption is, strictly-speaking false for A 1: 0, it can hold

in the limit as 0' ~ 0. For 0' fixed, Hernandez and Johnson (1980) have given a detailed

study of the normal-theory MLE for the Box-Cox model, and the extension to the

transform-both-sides model is straightforward.

Carroll and Ruppert (1984) have shown that as 0' ~ 0, ,8ML has the same asymptotic

variance as when A is known, and theorem 3( a) shows that ~ has the same behavior. In

fact, more is true:

Theorem 4: As 0' ~ 0, the likelihood equations satisfied by ~ML converge to (3.5) with

b( x) = log( x), TJ( x) = x, and x( x) = x2 - 1, so ~ and ~ML are asymptotically equivalent as

0' ~ O.

The approximation (1.5) becomes exact as the scale parameter 0' ~ 0. For this

reason, we could conjecture that as 0' ~ 0, A behaves as a parameter in a variance function.

Therefore, Theorem 3(a) is not unexpected; in heteroscedastic regression models the

estimate of ,8 using estimated reciprocal variances as weights is asymptotically equivalent

to the estimate using the true variances (Carroll and Ruppert 1982, 1988).

4. TRANSFORMATIONS TO SYMMETRY AND HOMOSCEDASTICITY

Model (1.4) postulates a single transformation to both symmetry and

homoscedasticity. While there may be a transformation to symmetry and another

transformation to homoscedasticity, there is no guarantee that a single transformation will
, .. 'T' T

induce both. Let Os = (AS' /-Ls' ,8s' O's) be the transformation to symmetry estimator
• •• AT T

proposed in section 2, and let ~h = (Ah, O'h' ,8h) be the transformation to

e·
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homoscedasticity of section 3. By comparing As to Ah we can test the hypothesis that

there is a transformation to both symmetry and homoscedasticity. Such tests will be

discussed in this section.

If we accept the hypothesis that a transformation to both symmetry and

homoscedasticity exists, then we could estimate it by a weighted average of As and )'h'
, , ,

However, in some sampling situations either As or Ah is unstable. For example, As is

highly variable if U is small so that transformations have only minor effects on

distributional shape. In practice, we truncate the estimates of A at :!:: 1 to avoid instability.

There appears to be no satisfactory way of combining the estimates if one of them has been

truncated. A better approach, the one taken here, is to solve a weighted average of
, ,

equations (2.3)-(2.4) and (3.1)-(3.2) that define f}s and ~h' respectively.
A ,

Let f}s be the limit of f}s and let ~h be the limit of ~h as n -+ co (we assume that

these limits exist). If As = Ah, then f3s =~ and Us = uh' but in general f3s f ~ and

Us f uh if As f Ah·

To test

(4.1)

we need the joint limiting distribution of ~s and ~h' Let OJ = (0;, ,6,I)T be the joint

estimator of Os and ~h' Then f}J is an M~stimator solving (2.4) and (3.2) simultaneously.

If we define WJ( 0J'xi) by stacking ws(ri( 0s),r~( 0s),xi'os) and wh(ri(,6,h),xi,,6,h)' then the

asymptotic variance of f}J is estimated by

where
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and

Let ~2(~s)' ~2(A~), and ~(~s'~h) be the estimated variances and covariance of the

indicated estimators. Then the test statistic

(4.2)

is asymptotically standard normal and can be used to test (4.1).

If the null hy~thesis is rejected, then an alternative model should be found. One

possibility is a heteroscedastic regression model without a transformation; this is

appropriate if the untransformed data are symmetric, but with a nonconstant variance.

Another possibility is to combine the transform-both-sides model with a nonconstant

variance function. Both types of models are discussed in detail in Carroll and Ruppert

(1988) .

Suppose that we accept HOat a sufficiently large significance level that we are

willing to proceed as though HOwere true. Let AObe the common value of \ and Aho It is

convenient to redefine Wh so that its components align with those of 'lis; the original

definition of Wh is useful when proving the theorems of secti()n :3 (see section 6) but is

cumbersome now. Let

e-
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bC[f(x,t1)J x(r)

17(rc)

17(r) f1A) (xi't1) w( O,x)

x(r)

In this redefinition the component 17(rc) has been added to estimate jJ, and the other

components have been rearranged. The functions 'l1s and 'l1h differ only in their first

component, the one used to estimate A. Wh now depends on rC as well as r and on 0

instead of just Ll.

Another possibility, one that we use in the example of section 5, is to omit the

component 17(rc) from 'lis and 'l1h and to replace rC by r and 0 by Ll throughout; this means

that jJ, is not estimated. When defining Ahs' the rationale for introducing J1 is less clear.
. .

Recall that J1 was introduced so that AS would have the same asymptotic variance A as

Taylor (1985) studied. Ahs will not have this variance whether J1 is used or not. Let
~ ~ A A

Llu = (Au' (Tu' 13u) be the combined heteroscedasticity-skewness estima~or without

centering by J1 ("U " means uncentered).

To estimate A define

a S w S 1. Then define 0hs as the solution to

(4.3)
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.
If w = 1, then 0hs = Os· If w = 0, then 0hs equals .6.h except that 0hs has the extra

component that estimates J.L. Presumably a value of w strictly between 0 and 1 would be

better than either of these extremes. We propose letting w minimize the asymptotic

variance of "hs.
. .

Let Vhiw) be the estimated variance matrix of 0hs with w fixed. Vhs is obtained
. .

in the same way as Vs in section 2 (or Vh of section 3) but with 'lis replaced by 'lIhs . More
. .

explicitly, let Ah and Bh be defined by (3.3) and (3.4) but with the new definjtion of 'lIh.

Define

(4.4)

Then

where

. . .
Bhs(w) = wBs + (l-w) Bh

and

Define C= (As"~h,As.h,Bs,Bh) and let ~(C) be the value of w that minimizes ~2(/\) of

Vhs(w).

e·
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. .
C and 0hs are both M~timates,defined jointly by (2.5), (2.6), (3.3), (3.4), (4.4),

. . .
and (4.3), where w = w(c) in (4.3). When estimating the asymptotic variance of 0hs it

would be burdensome if we needed to examine the joint limiting dist.ribution of 0hs and C.

Fortunately, this is not the case. The following theorem shows that for large enough

sample sizes we can act as if w were fixed and use Vhs(w) to estimate the variance of 0hs'

Theorem 5: The asymptotic variance of 0hs is the same as it would be if C where known.

5. AN EXAMPLE

As a numerical example we use the Skeena River sockeye salmon data from Ricker

and Smith (1975). These data consist of yearly values of recruits (R) and spawners (S)

from this fishery. In a given year, the value of S is the total number of fish that spawn,

that is, the number of fish returning to the river to spawn minus the catch. The value of R

for any year is the total number of fish produced by spawning this year that eventually

(usually after four years) return to spawn themselves. The transform-both-sides model as

well as related heteroscedastic regression models have been fit to these data by Ruppert

and Carroll (1985), Carroll and Ruppert (1987, 1988), and Carroll, Cressie, and Ruppert

(1987). After examining a robust estimator and influence diagnostics, Carroll and Ruppert

(1987) suggest that one year, 1951, should be eliminated from the analysis. The number of

recruits was very low this year because of a rock slide, and as a result, this observation has

tremendous influence on the fit. The year 1955 has a low value of S since the spawning

population that year came from 1951, but the recruitment in 1955 is nearly what would be

expected given this low value of S. We have retained 1955.
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For simplicity and b~ause these data have already been carefully examined for

influential observations and outliers, we use least-squares estimation, TJ(x) = x. For the

skewness estimator we use ¢(x) = x3. With these choices of TJ and ¢, ~ and ~ can (and

will) be estimated without simultaneous estimation of the scale parameter (7. AlsB for
.

simplicity, we use.6. ,the heteroscedasticity-skewness estimator without the centeringu

constant. For Ah we use b(x) = log(x).

As a regression model we use the Ricker (1954) model,

though other models exist that appear to fit equally well (Ruppert and Carroll 1985 and

Carroll and Ruppert 1988).

The most prominent aspect of the data is their heteroscedasticity. In fact,

Ah = -.86, suggesting a fairly radical transformation to c~rrect for the no~consta~t e .
variance. The data exhibit moderate righ't skewness and AS is .45. Since AS and Ah are

rather different, the next step should be to test whether AS = Ah. The appropriate test
.... ... " ...

statistic, t, is given by (4.2). The variance matrix of (l3s' I3h , As, Ah) was calculated

numerically and the result was t = 1.39, so we decided to proceed as though AS = Ah (at

least for illustrative purposes).
. .

The weight that minimizes the estimated asymptotic variance of A is w = .85,

giving Ahs = -.26. This agrees well with the maximum likelihood estimate of -.20 found

by Carroll and Ruppert (1987).

Recall that the asymptotic variance of Ahs is the same as if the weight w were

known. For this small data set (n = 27) can we treat w as fixed? To answer this question

we performed a bootstrap experiment. The bootstrap data were generated from ·(1.3) using

p, ,8) = Phs' I3hs )' The errors, t, were generated by sampling with replacement from the

•
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... ........ ....

"symmetrized residuals", {f1'oo, fn,-f1'oo.,-fn}, where

.
• (A) JA) •
f· = y. hs - f\ hs (x·,l3h ).
1 lIS

Under the bootstrap distribution the null hypothesis that As = Ah is true. We used 200
. .

bootstrap repetitions. We also calculated As and Ah from the bootstrap samples, but these
. .

proved occasionally unstable so we truncated them at ± 1. Ah was truncated about 1

sample in 6 and As about 1 sample in 12. For this reason we did not calculate bootstrap
• A •

means and standard deviations for Ah and As. Fortunately, Ahs was stable and was in the

interval (-1, 1) on all 200 bootstrap samples.

The bootstrap mean and standard errors are given in Table 1 along with the original

estimates and the standard errors from Vhs' The bootstrap mean and standard deviation
• • A

of w are also given. It is clear from the standard deviation of w (.22) that w is far from
A

constant. Moreover, the bootstrap standard error of Ahs' which is .45, is considerably

larger than the standard error from Vhs' .279. This suggests that the approximation of

treating w as fixed is adequate only for larger sample sizes. This phenomenon is similar to

one observed 'by Carroll (1979). Switzer's (1970) adaptive location estimator is defined as

the 5%, 10%, or 25% trimmed mean, whichever has the smallest estimated variance.

Asymptotically, Switzer's estimator behaves as if the minimum-variance trimming

proportion were known. Carroll found that for small samples, Switzer's estimator is

considerably more variable than asymptotics suggest.

Theorem 3(a) suggests estimating the. variance matrix of ,B from the nonlinear

least-squares fit of yfA) on f(A)(xi',B), with A = ~hs treated as fixed. The estimated

variance matrix is the
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where ~2 is the mean square for error. The nonlinear least-squares standard errors are also

given in Table 1.

To study the asymptotic standard errors for larger sample sizes, we conducted a

second bootstrap experiment, this time with n = 81. The results, which appear in Table l.

show that for n = 81 the standard error of Ahs from Vhs(w) agrees to two decimals with

the bootstrap standard error. For samples of this size, treating w as fixed seems to be an

adequate approximation. For Phs' the nonlinear least-squares standard errors are closer to

the bootstrap standard errors than the standard errors from Vhs(w). A possible reason for

this is that the nonlinear least-squares standard errors and the bootstrap standard errors

both use the assumption that the errors, €i' are homoscedastic. The estimate Vhs (w) is

related to the jackknife estimate of variance that does not assume homoscedasticity; see

Wu (1986).

Implementation

vVe programmed these estimators in the matrix language GAUSS. In principle, it

should be possible to use a nonlinear equation solving method, such as the

Newton-Raphson method, to solve for (3, Ahs ' and w simultaneously. These methods are

potentially fast and efficient but proved to be very unreliable, having trouble with both

non-convergence and local extrema. Instead, we used a bisection approach for /\ that is

similar to one used by Box and Cox (1964). For fixed Aand w, (3(A,W) was determined

using the Gauss-Newton method. This gave a value of the first component of whs ' a

•

e-
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positive value indicating that a more severe transformation (i. e. A smaller) was needed and

a negative value indicating the opposite. Then A was adjusted until equation (4.3) was

solved for this fixed value of w. The standard deviation of Ahs was then found from

Vhs(w).

This process was repeated for all w on a grid of values between 0 and 1. The grid

was repeatedly refined around the minimizing value of A until sufficient accuracy was

obtained.

6. PROOFS

We will make repeated use of the following result.

Lemma 1: Let A and B be qxq matrices such that

B=

[ ]

where Bn is q1 xq1 and B22 is Q2 xq2 (Q1 + Q2 = Q). Partition A in the same manner. Then

ft f -1 -T. -1 -T
the q1 xQ1 upper-Ie corner 0 B AB zs B11AU B11'

Proof: This is a direct calculation using

[ o ]-1B22 . 0
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If the parameter 8 is partitioned as 8 = (81, 82) and is estimated by an

M~stimator, then by the standard asymptotic theory of M~stimation the asymptotic

variance of 8is B-1AB-T for certain matrices B and A (Huber 1967). Lemma 1 tells us

when the asymptotic variance of 81 is the same as it would be if the "nuisance parameter"

(}2 where known and did not need to be estimated; such knowledge, of course, can greatly

simplify theoretical studies as well as the calculation of standard errors in practice.

If 81 is the nuisance parameter, then the condition that B21 = 0 is sufficient for 82

to have the same asymptotic variance as if 81 were known. If B12 = B21 = 0, then each of

(}1 and 82 can be estimated as well as if the other were known. It does not follow that 81

and 82 are asymptotically uncorrelated; this requires that A12 = A~1 = O. For maximum

likelihood estimation B = BT = A, and it is well-known that the following are equivalent:

(a) The asymptotic variance of 81 is the same as when 82 is known, (b) The asymptotic
. . .

variance of 82 is the same as when 81 is known, and (c) 81 and 82 are asymptotically

uncorrelated. e ·
Proof of Theorem 1: Let p be the dimension of /3. Partition Bs and As as in lemma 1 with

q1 = P + 2 and q2 = 1. Then by lemma 1 we need only show that

Bs 12 = O.,

This is easy to prove since E( ip( ~) ~) = E( ~( ~) ~) = 0 because ijJ and " are even and t is

symmetrically distributed. In general, Bs,21 # 0 and A12 # 0 so u and (A, /3, /-L) are

asymptotically correlated and the asymptotic variance of u is different than it would be if

(/\, (3, /-L) were known. This proves (a).
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To simplify notation let C = As,ll and D = Bs,ll' By part (a), the asymptotic

variance of (~, 0, ~) is D-1CD-T . Partition C and D as in lemma 1 with q1 = 2 and

q2 = p. To prove (b) by lemma 1 it suffices to prove that D12 = O. Since

it follows that

(2.7)
n

- oj of3 ~ E ¢(r~( 0)) =
i=l

and for the same reason

(2.8)
n

ojof3 ~ E(l1(r~(O)) = O.
. 1 11=

(2.7) and (2.8) prove that D12 = O.

T '"
To prove (c), note that in general D21 :/= aand C12 = C 21 :/= 0 so that (A, 11-) and ,3

are asymptotically correlated and the asymptotic variance of f3 depends on whether (/\. p)

is estimated or not. 0

Proof of Theorem 2: (a) Let

b~(tJ) = b[f(x.,tJ)J - O(tJ).
1 1
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Applying lemma 1 to Bh and Ah with q1 = 2 and q2 = p, it suffices to prove that

Bh,12 = 0, where

Now,

.
Bh 12 =,

[
n

E 8/8/3,l'. bf(/3) x(ri(~))
1=1

n
E 8/8/3 l'. x(r i (~) )

i=l

n
E 8/8/3 l'. b~(/3) x(r,(~)) =

i=l 1 1

1
•

since

E x[r,(~)] ~ 8/ 8/3 b~(/3) + ~ b~(/3) Ex(rl'(~)) [- f~A)(Xl',/3)/0"] = 0,
1 'I 1 'II1= 1=

n
l'. b~(/3) :: 0

. 1 11=

and EX( t/ 0") = O. Also,

n n . (A)
E 8/8/3 l'. x(r,(~)) = l'. x(r.(~)) [-f/3 (x.,/3)/O"] = O.

'11 '1 1 11= 1=

(b) Let D = Bh 11 and C = Ah 11 where B and A are partitioned as in the proof of (a)., ,
Then' partition D and C as in lemma 1 with q1 = q2 = 1. Then the proof follows from

lemma 1 since
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n
x(rl'(~)) [-r.(~)j 0"] ~ b~(,B) = O. 0

1 . 1 1
1=

Proof of Theorem 3: (a) Partition Bh and Ah as in lemma 1 with ql = 2 and q2 = p. We

now regard (A,O") as the nuisance parameter so we need to show that Bh,21 -+ 0 as 0" -+ 0; see

(1) (2)
the remarks after lemma 1. Now Bh 21 = [Bh 21 Bh 21] where, , ,

B~12)1= aj aA El1(rl'(~)) f{ A)(X.,,B) w(~,x.)
, i=1 /3 1 1

and

(2) n ~A)Bh 21= a/ aO" ~ q(r.(~)) f (x.,,B) w(~,x.).
, i=l 1 1 1

Since E [ri(~) ~(r/~))] = 0, B~:~1 = O. As in the proof of (3.8), as 0" -+ 0

E [~(t/O") (t/O")]log(f(xi',B)) = 0,

h B (l) NO
W ence h 21 = .,
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(b,c) From theorem 2(b), we know that the asymptotic variance of ~ is AA/B~ where

(3.7) •

and

n c
B, = :E b

1
,({3) E{X(t/o-) (ar.(~)/aA)}.

A • 1 11=

Now letting y = Yi and f = f(xi'{3),

As q -10, Y -I f. Therefore, since d(xlog(x))/dx = 1 + log(x), as q -10

so

Therefore, as q -I 0 •

(3.9)
n

B, ~ E [( t/ q) X( f./ q)] ~ 10g[f(x.,{3)] b~({3).
A . 1 1 1

1=
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(3.7) and (3.9) prove (3.5). (3.6) follows by applying the Cauchy-Schwarz inequality to

the denominator of (3.5). 0

-1)As (J -l 0 certain elements of Bh converge to 00 at rate O( (J . This does not affect

our argument. One can stabilize Bh through the post-multiplication of Bh by
., .

Diag(l,(J, ... ,(J). This gives us the asymptotic variance of ('\, (J/ (J, (3/ (J) which has a finite.

non-zero limit as (J -l' O. It is intuitively reasonable that the variance of ,\ does not

converge to 0 as (J -l 0; if (J = 0 then ,\ is not identifiable.

Proof of Theorem 4: The log-likelihood is

n n
L(~) = - n/2Iog(211'(J2) -1/2 ~ r~(~) + (,\ -1) ~ log(y.).

. 1 1 . 1 11= 1=

.
Differentiating L(~) with respect to (3, (J, and the '\, we see that ~ML solves

(3.1())

(3.11)

and

(3.12)

n ~,\)~ rl'(~) f (x.,(3) = 0,
. 1 11=

n
~ [r~(~) - 1] = 0,

. 1 11=

n
E rl'(~) (fJr.(6.)/o'\) -log(y.) = O.. 1 1 11=

We now look at (3.12) as (J-l O. By (3.8), fJrj(j.)/o,\ ~ 10g(Yi) (f./(J) ~ 10g[f(xi'(3)] (f./(J), so

as (J -l 0 (3.12) converges to
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n 2
E [r. (A) -l]log[f(x.,,8)].

. 1 1 1
1=

•

Comparing (3.10), (3.11), and (3.13) to (3.1)-(3.2), we see that the likelihood equations

converge to (3.2) as ~ ~ o. 0

Proof of theorem 5: This is another application of lemma 1. The key result is that

The proof of Theorem 5 could be extended to a more general result about combining two or

more unbiased estimating equations estimating the same parameter, but we will not do this
.

here. Notice however that the same proof applies to Au, the heteroscedasticity-skewness

estimator without the centering constant p,.

•
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Table 1. Bootstrap expectations, asymptotic standard deviations, and
bootstrap standard deviations.

131 132 A w

Original Estimates = values 3.8 -5 -.26 .85-9.7xl0
generating bootstrap data

n = 27

Bootstrap expectation 3.8 -5 -.29 .72-9.3xl0

. . -5Std. dey. from Vhs(w) .61 3.5xlO .28

Std. dey. from NL regression .67 3.0xl0-5

Bootstrap Std. dey. .81 -5 .45 .223.3xl0

n = 81

Bootstrap expectation 3.8 -5 -.22 .81-9.6xl0

. * -5Std. dey. from Vhs(w) .35 2.0xl0 .17

* 1.7xl0-5Std. dey. from NL regression .39

Bootstrap std. dev. .41 -5 .17 .0831.8xl0

* .
Obtained by dividing the entries for n = 27 by .;-3.


