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Abstract

A simple variational argument is employed to establish the efficient score

function in semiparametric mixture models. This provides an alternate

derivation to those offered by Begun et a1 (1983) and Lindsay (1983).
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1. INTRODUCTION

This note employs a simple variational argument to establish the optimality

of Lindsay's (1983) "conditional" score for the class of semiparametric mixture

models described below. The result yields a lower bound for the covariance

matrix of the limiting distribution of n1/ 2-consistent estimators of the

parametric component of the mixture model. Lindsay (1983) established

optimality of the conditional score by studying "directional score statistics."

Optimality of the conditional score can also be deduced from the work of Begun

et a1 (1983) which involves the notion of "Hellinger-differentiable

likelihoods." The ease with which the optimality result is established in

Theorem 1 comes at the expense of restricting attention to the class of regular

estimating equations delineated in (R1) - (R3) below and by assuming that the

parameter space of mixing densities is complete as defined in Section 3. A

special case of Theorem 1 can be found in Stefanski and Carroll (1987).

The model and efficient score function are presented in Sections 2 and 3

respectively. Section 4 contains examples, one of which shows that the

conditional score need not be efficient if the family of mixing densities is

not complete.

2. THE MODEL

Suppose that e is an open subset of IRP and that for each e in e there exist

q k n _k q ~ 1R1 n 1functions Ce : IR ~ R , Te : IR ~ R-, de: IR ~ and Se: IR ~ IR and an open

subset, He' of ~ such that for each ~ in He

(2.1 )

is a probability density with respect to a sigma-finite measure m(e) (not

depending on e or ~) on IRn .
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For fixed a, {h(-i~,a): ~ E Ha } is a k-parameter exponential family with

the natural sufficient statistic determined by Ta (-). Assume that this family

is regular, Ca (-) is continuous and that the range of Ca(~) for ~ in Ha has a

nonempty interior. This, in turn, implies that the family is complete. Let b

be a collection of probability densities on R
q with respect to a sigma-finite

measure v(-) containing a component which is absolutely continuous with respect

to Lebesque measure. Now if 9 is a density in b for which supp(g) is a subset

of Ha , then

f ( - ;a ,9 ) = Jh ( - ;~ , a )9 (~ )dv (~ ) (2 . 2 )

is a probabi1 iOty density on Rn with respect to the measure m(-). Equation (2.2)

defines a semi-parametric model with typical "parameter" w = (e,g). Let n be

the parameter space for (2.2) specified as n = {(a,g): a E S, 9 E band

supp(g) C Ha }. Finally introduce the notation ~(-,a,g) = ~og f(-;a,g) and

l(-,e,g) = (a/ae)~(-,e,g) and let Z, Zl' Z2' ..• denote i.i.d. random vectors

with common density (2.2).

3. THE EFFICIENT SCORE FUNCTION

This section considers asymptotic efficiency of the class of M-estimators,

i.e. , those estimators satisfying equations of the form E ~(Z. ,a) = 0 where,
..... IRn

.c\ -DT x\::l'~IK'. Under an assumption concerning the richness of b an optimal

estimating equation is identified using a simple variational argument.
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Let ~ be the class of regular estimating equations for e defined by the

requirements that if 0/ is in ~ then for every w in 0:

(R1)

(R3) There exists a positive definite matrix

Vo/ = {Ew(o/~T)}-'

estimators, {e},

EW(~T){EW(~o/T)}-1 and a sequence of

satisfying E o/(z.,e) = 0 such that,
n1/2{~ - e) r N{O,Vo/).

w

It is now shown that the unbiasedness condition (R2) implies conditional

unbiasedness with respect to Te{Z), i.e., Ew{o/(Z,e)ITe(Z)} = 0, for every 0/ in

~, provided the family of densities b is complete as defined below.

(D) A collection of functions, h, is said to be complete with respect to

a measure ~ if a necessary condition for

fr(t)S{t)d~{t) = 0 for all s in h

is r(.) = 0 ~-almost surely.

For a fixed e in e let be = {g E b: (e,g) E O} and assume:

(C) be is complete with respect to v for each e in e.

Assumption (C) plays a role similar to the convexity condition (C) of

Bickel (1982), and to assumption (S) of Begun et. ale (1983). Note that if be

contains a complete parametric family of densities (in the familiar sense) then

it is necessarily complete in the sense of (D).
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The following Lemma establishes the conditional unbiasedness of scores in

~.

LEMMA 1. If ~ e ~, then condition (C) implies Ew{~(Z,e)ITe(Z)} = 0 for all w

in O.

PROOF. Fix e and let T = Te(Z). For any ~ in

for all 9 in be' Conditioning first on Te(Z)

~ we know that Ee {~(Z,e)} = 0,g

implies that Ee {Q(T)} = 0 for,g

all 9 in be where Q(T) = Ee,g{~(z,e)ITe(Z)}. But

Ee,g{Q(T)} =f Q{Te(z)}f(z;e,g)dm(z)

=J Q{Te(Z)}J h(z;~,e)g(~)dv(~)dm(z)

=J [J Q{Te(Z)}h(Z;~,e)dm(z)1 g(~)dv(~)

where the interchange of integrations is justified by (R1) and Fubini's

Theorem. Since Ee,g{Q(T)} = 0 for all 9 in be' condition (C) implies that

J Q{Te(Z)}h(z;~,e)dm(z) = 0 (3.1)

ve-almost surely where ve is the restriction of v to He' Continuity of Ce(·),

the integrability condition (R1) and the exponential character of h(.;~,e)

imply that the left hand side of (3.1) is a continuous function of~. Thus

since v contains a component which is absolutely continuous with respect to

Lebesgue measure, (3.1) holds for all ~ in He' Finally, completeness of the

family {h(.;~,e): ~ e He} implies that Q{Te(Z)} = 0 almost surely. IIII
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Lemma 1 shows that the only scores which are unbiased for all w € 0 are

those which are conditionally unbiased with respect to Te(Z). It also permits

a simply proof that every score in ~ is less efficient than

*.. * *T -1
~ (Z,e) = ~(Z,e,g) - E{~(z,e,g)ITe(Z)} in that v~~ v~ = {E(~ ~ )}

in the sense of positive definiteness. In order for v~* to be a meaningful

* *lower bound, (i.e., be finite) it is necessary that E(~ ~ ) be positive definite.

This means that the a-field generated by Te(Z) must be strictly contained in the

a-field generated by Z and, in particular, that no linear combination of R, ATR,

can be written as a function of Te(Z) almost surely. Under this assumption the

following result is obtained.

THEOREM 1. Under the conditions stated above, v~ ~ v~ for all ~ in ~.

PROOF. Let IC~ be the influence function for~, i.e., IC~ = {E(~RT)}-1~;

*IC~* is the influence function for ~. Again let T = Te(Z).

Pick any ~ in~. Since ~RT = ~*T + ~(~TIT), conditioning first on T

.T *Tand then appealing to Lemma 1 shows that E(~~ ) = E(~ ) whenever ~ is

-1 **T·conditionally unbiased. From this it follows that v~= E(~ ~ ) and

T T
E(IC~IC~) = E(IC~*IC~) = v~*. Using these identities shows that

T T T T
E{(IC~ - IC~*)(IC~ - IC~) } = E(IC~IC~) - E(IC~IC~) - E(IC~IC~*)

T
+ E(IC~*IC~*) = v~ - v~. Thus v~ can be written as the sum of v~

nonnegative definite matrix which vanishes if and only if IC~ = IC~* almost

surely, establishing the desired result. IIII

Provided differentiation and integration can be interchanged in (2.2)

R(Z,e,g) is given by
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J {(alae) ~g h(Z;~,e)}h(Z;~,e)g(~)dv(n)
h(Z;~,e)g(~)dv(~)

and upon taking expectations conditional on Te(Z) one finds that

~(Z,e,g) - E{~(z,e,g)ITe(Z)} =

T
Ce(~)exp{Ce(~)Te(Z)+de(~)}g(~)dv

eXP{C~(~)Te(Z)+de(~)}9(~)dV
(3.2)

where "." denotes differentiation with respect to e and for a function

R(e) = {R,(~), ... ,Rs(e)}T,R(e) denotes the pxs matrix with i,jth entry

aRj(e)/aei . The ratio of integrals in (3.2) is seen to be E{Ce(~)ITe(Z)}.

4. EXAMPLES

Applications to measurement-error models are discussed in Stefanski and

Carroll (1987). Example 4.1 has been previously considered by Lindsay ('983).

Example 4.2 was motivated by some unpublished work of Brian Allen's at the

University of Guelph citing difficulties with estimation in random coefficient

models and by a recent problem discussed by Cox and Solomon (1988). Finally

Section 4.3 illustrates the crucial role played by assumption (C).

4.1 Paired exponentials with proportional hazards.

Let Z = (Y1 , y2 )T where Y, and Y2 are independent exponentially distributed

random variables with means (~)-1 and ~-1 respectively. Then h(Z;~,e) has the

form (2.1) with Ce(~) =~,

For this model Te(Z) = -Y 1

we get the efficient score

2Te(Z) = -(ey 1+y 2), de(~) = ~og(~ ) and Se(Z) = o.
• -1

and E{Te(Z)ITe(Z)} = -(2e) (ey,+Y 2) from which
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*(\I (z,e)

For this model it is assumed that v is Lebesque measure on (O,~) and b contains

all probability densities on (O,~). The asymptotic variance lower bound for

this model is given by [E{(\I*(Z,e)}2]-1 where

(4.1 )

and

f
~ 2 -llx

Q(x) = a II e 9(1l)dl'}

4.2 Random coefficient regression models.

T
Let Z = (Y1""'Yn) and let X be an nxp matrix of rank p. Let ~(p) be

an nxn matrix with i,jth entry p1i-jl (Ipl < 1). With II = f3, a pX1 vector of

2 Tregression coefficients, and e = (0 ,p) suppose that the density of Z given II

2 T -1
and e has the form (2.1) where Ce(ll) =llVO , Te(Z) = X ~ (p)Z,

2 -1 T -1 2 -1 T T -1
Se(Z) = -(20) Z ~ (p)Z and de(ll) = -(20) II X ~ (p)XQ

- (1/2) ~og 1~(p)1 - (n/2)~og(2na2). Under the assumption that f3 is a

random vector the above delineates a random coefficient regression model with

autoregressive errors. For this model

7 Tuo - 11-uo- 1 7

~

202

(4.2)



Page 8

and

(4.3)

a

-z Tt -1 Pi:- 1X

where t:- 1 = t- 1 (p) and (t) . . = li_jlpli-jl-1.
, , J

Let M =xTt:- 1X, then some routine calculations show that

T -1
E{Z t Z IT (Z)}

204 e

T~(Z)M-1Te(Z)

20
4

These conditional expectations determine the optimal score for e using (4.2)

(4.3) and (3.2). The resulting expression is very complicated. The feasibility

of using this result in practice in full generality will be explored in a

future paper. For now attention is restricted to two special cases of this

model, one of long-standing interest (Neyman and Scott, 1948), the other of

more recent interest (Cox and Solomon, 1988).

TSuppose p = a and X = (1, ... ,1) , thus Z. consists of n normal measurements,
on the scalar ~.. Neyman and Scott (1948) discussed estimation of 0

2 in this,
setup. The optimal estimating equation reduces to

*<jI (Z,e)
(Z TX) 2

4
2no

which yields the familiar estimator
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from the sample {Z1' ... , ZN}.

TNow suppose X = (1,1,1) , so that Z. forms a stationary first-order,
autoregressive process of correlation p and mean ~. of length 3, i=1, ..• , N,,
see Cox and Solomon (1988). For this model

-2P(Y~ + 2Y~ + Y~) + 2(1+p2)y2(y 1+y 3)

20'2( 1-p2) 2

o

E{Se(Z) ITe(Z)} =

2 2
2(1-p) -4p 2(Y 1+Y2(1-p)+Y3)

2
+

222
(3-p)(1-p ) 0' (3-p) (1+p)

and

1
0

E<Te(Z)lTe(Z)} =
4(Y1+(1-p)Y2+Y3 )

J2
(l+p) (3-p)

These four quantities are combined according to (3.2) to form the efficient

estimating equations for (0'2,p)T. Since the resulting score depends on g

through E{~IY1+(1-p)Y2+Y3}' fUlly efficient estimation in this model requires

estimation of this regression function.
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4.3 On the completeness of b.

If b is not complete then the optimality result does not necessarily hold.

and suppose now that

-1 -1 -1 -1
Then E(Y1) = E{E(Y11~)} = E(~) =e E(~ ) = e

var(Y1 ) = 2e-2{E(~-2) - 1/2} where E(~-i) = f~-ig(~)~.
--1 1/2 - 2-2This implies that if e = Y1 ,then n (e- e) L N(0,2e {E(~ )-1/2}).

w
Now take a sequence, {gk(.)}' of densities in b such that gk(.) has support

Consider the paired-exponentials example (Sec. 4.1)

b = {g: f~-1g(~)d~ = 1}.

independent of g(.), and

(ak , bk ) where both ak and 1/bk increase to one as k increases. Then

2e2{E(~-2) - 1/2} ~ e2 while the inverse of (4.1) approaches 2e 2 Thus there

are choices of g in b under which e beats the "optimal" estimator. Of course

b is not complete in this case.
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