
Parameter Estimation in Intensity Models for the Maintained
Responses of Neurons

Chia-yee Jerry Liu

Chades E. Smith

Abstract: In analyzing the responses of cat auditory brainstem neurons, Johnson et al. (1986, Hearing
Res. 21: 135-159) developed a point process model to describe the seri8.I dependence between the
interspike intervals in t~e stationary portions of spike-trains. Following his approach, maximum
likelihood estimation is examined for one parametric model of the intensity function of the spike-train.
The procedureS were tested on simulations of the stochastic neural model of Smith & Goldberg (1985,
BioI. Cybemet. 54:41-51). This model can produce spike-trains that are renewal processes or have a
first order dependence. In the ·renewal case the intensity function is the hazard rate, while the non­
renewal case requires a "whitening" procedure via a conditional mean plot analogous to an AR(1) time
series model. The concavity of the premedian portion of the hazard rate or "whitened" hazard rate was
found to be quite influential both in the specification of the functional form of the intensity and in
model verification.

Dept. of Statistic:a

North Carolina State University

Raleigh, NC 27695



Parameter Estimation in Intensity Models for the Maintained Responses of Neurons

1. Introduction

The phenomenon of spike-trains which are ·produced by neurons in the nervous system has

been extensively studied and reported (see, e.g., Yang and Chen, 1978, and Tuckwell, 1988). It is

widely accepted that the temporal pattern of a spike-train, either under external stimuli (driven) or

not (spontaneous), carries important information about both the messages being conveyed through

the neuron and the spike generating mechanism of the neuron. The action potentials comprising a

spike-train share the same properties of being temporally random, of indistinguishable waveforms,.

and relatively brief. These properties lead to stochastic point process modeling (Perkel et al., 1967)

and statistical analysis of neural spike-trains (Landolt and Correia, 1978).

The main goal of this report is to present an algorithm based on maximum likelihood

principles to estimate the parameters contained in the point process model which is used to

describe a spike-train. The modeling is through the intensity function of the point process. The

_proposed algorithm, being conceptually clear as well as easy to interpret, is demonstrated on two

simulated spike-train data sets.

The intensity approach to characterize a general point process is sketched out in Section 2.

Simulated data sets mimicking auditory-nerve fibers spike-trains are used for computational

purposes in this report. They are described in Section 3. Also in Section 3, there is a sequence of

data preparation steps to ascertain whether the data satisfies certain requirements of this algorithm

before the actual computation is carried out. The algorithm, together with the selected model, is

applied to the two artificial spike-trains and the results are summarized in Sections 4 and 5.
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2. Intensity ApplOllch

The essence of this approach is to extend the definition of the intensity function of an

inhomogeneous Poisson process to make it dependent not only on time, but also the history of the

process up to that time. In so doing, modeling general point process data, e.g., ones with auto­

correlation, becomes more straight-forward. The utility of this approach can also be seen in Yang

and Shamma, 1990, where the intensity approach to neural spike-trains was used with

simultaneous recordings of multiple neurons to provide estimates of synaptic connectivities.

The counting process of a point process up to time t is denoted by Nt. The corresponding

occurrence times are denoted by { Wn ; n=1,2, ...,Ntl, and the interarrival times by ( Tn;

n=1,2, ...,Ntl. The occurrence times and the interarrival times provide exactly the same information

about a point process because 7'k=wk+l-wk' for k ~ 1 by definition. For spike-train data, Tn is also

called the n-th interspike interval (151), and it is also assumed that Wo =O.

The intensity function A(t) of an inhomogeneous Poisson process (Nt; t ~ OJ is defined to

satisfy

PrfNt+6-Nt> 1}=0 (6)

for some 6> O. Snyder, 1975, defines a self-exciting point process as one whose intensity function

depends on the entire history, denoted by Hh of the point process up to time t. The intensity

function A(t; HJ now satisfies

and

PrfNt+6- Nt > 1/ HJ= 0 (6)

for some 6 > 0 where Ht includes the occurrence times { Wn ; n=1,2, ... ,Ntl and the number of

occurrences Nt of the process up to time t.

Thus defined, the class of stationary renewal point processes (see Johnson and Swami, 1983)

will have an intensity function of the form

where WNt denotes the last occurrence time of the process up to time t.
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>.(t; Ht)= {

o , otherwise

where >.0 is the constant signal rate and r(·) is the recovery function characterizing the relative

refractory behavior of the spike-train. Notationally, the intensity function will be simplified to be

We adopt the approach of Johnson and Swami, 1983, to model a stationary renewal point

process by decomposing its intensity function into a product of two parts: signal and recovery. The

intensity function of a stationary renewal point process now has the form

>'0' r(t-wa,), if t-wa, > 0
'Wt 'Wt -

The absolute refractory period, or the dead-time, is considered fixed in this report. It behaves as a

parameter td in the intensity function, i.e.,

For model selection, in renewal case, the hazard function of the interspike intervals is

identical to the intensity function ( Snyder, 1975). Therefore the empirical hazard rate plot should

give clues as to what the underlying intensity model would be, provided that the spike-train is

renewal. This diagnostic step is not always useful because the standard errors for the hazard rate

increases as time increases. It is not easy to provide a meaningful fit to the empirical hazard rate

when data size is not large enough.

The likelihood function of a spike-train with history Ht and an intensity function >'(t; Ht)

is

L( Il; Ht)=exp{- J:>.(s; H.)ds+ J: log{ >.(s; H.))dN.}

where 'l denotes the parameters contained in >.(t; Ht) (see Snyder, 1975). The upper limits of the

integrals are usually replaced by Wn since no information is available beyond the last occurrence

time.
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3. Data Preparation Steps

Since only stationary point processes are considered in this report, certain requirements

must be met before the maximum likelihood computation can be carried out for the data. If auto­

correlation are present, serial dependence is removed by a "whitening" procedure to produce a

stationary renewal process. Maximum likelihood estimation is then carried out on this underlying

process. Model validation via simulating with estimated parameters and reversing the whitening if

necessary follows parameter estimation. The procedures are put together as a flow-chart in Fig. 1.

The steps are briefly described as follows:

Step 1. Check stationarity. The Wald-Wolfowitz runs test is used as suggested in

Correia and Landolt, 1977. Stop the procedure if the spike-train is not stationary since only

stationary point processes are considered. Examples of stationary point processes are

spontaneous spike-trains and maintained responses of auditory-nerve fibers (see Kiang et al.,

1965).

Step e. Check independence among lSI's. The correlogram is a useful tool for

this purpose. The conditional mean plot is also helpful. If the spike-train shows evidence of

auto-correlation, move to Step eA.

Step eA. Use the conditional interval histograms to determine the type of

dependence in the lSI's. When the difference in the conditional interval histograms can be

explained solely by the magnitudes of the conditioning intervals, i.e., the difference is no

more than a shift in the horizontal axis, a "whitening" procedure somewhat analogous to

an AR(1) time series model is used and the transformed ("whitened") spike-train is sent

back to Step 1 again. Details are illustrated in Section 5.

Step 9. Test for the renewal property of the spike-train. The periodogram test

(see Cox and Lewis, 1966), or the Bartlett's Kolmogorov-Smirnov test (see Fuller, 1976), is

employed together with the conditional interval histograms (see Section 5). One possible way

for an independent point process to be non-renewal is that it is a semi-alternating 'renewal (SAR)

point process (see Kwaadsteniet, 1982).
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Step 4. Select an intensity function and carry out maximum likelihood

estimation.

Step 5. Use the estimates of the parameters to simulate data to be compared

with the original one. For the non-renewal case, generate a renewal data using the parameter

estimates, and then reverse the whitening procedure. Finally compare this resultant spike-train

with the original one.

The data sets NERVE1 and JIlERVE2 are generated using the afterhyperpolarization model

of Smith and Goldberg, 1985. Each of them contains 2000 interspike intervals. The Wald­

Wolfowitz runs test statistics for them are .0323 and 0.7641, respectively. That is, they are both

stationary since the test statistics should be asymptotically normally distributed with mean 0 and

variance 1 under the null hypothesis.

The correlogram of NERVE1 as shown in Fig. 2.1.(a) exhibits no strong evidence of auto­

correlation of any order. The conditional mean plot in Fig. 2.1.(b) says the same thing. The test

statistic of NERVE1 for the periodogram test is 0.0174, implying that NERVE1 is renewal. The

_conditional interval histograms of NERVE1, as shown in Fig. 3(a), further support its renewal

property since there is no significant difference among the histograms. It then can be treated as a

stationary renewal process.

The correlogram and the conditional mean plot of NERVE2 ( Figs. 2.2.(a) and (b))

support the existence of a negative first order auto-correlation. We then moved to Step 2A for the

"whitening" procedure. The periodogram test, although unnecessary at this point, is performed on

NERVE2 to confirm that the renewal hypothesis is rejected at 0.01 level as expected.
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4. The Renewal ~NERVEl

The selected intensity function is

It is seen that the model contains a constant signal rate Ao, a recovery shape constant a, a

recovery time constant {3, and the recovery function r(·) exponentially approaches 1. The

likelihood equations and the maximum log-likelihoods (m.l.l.) ofthis model are derived without the

dead-time td and listed in the Appendix.

Because of the special nature of fIxed dead-time parameter in the model, it is possible to

consider fIrst the model without the dead-time, and then examine the effect of the dead-time.The

model is fItted to data sets NERVEl(j)={ Tn-td(j); n=1,2, ...,2000} where {Tn; n=1,2, ... ,2000} is

the original data set and td(j) denotes a value selected for the ~ead-time within the range

D={(O, min Tn)}.
n

Then estimates of other parameters can be evaluated for each dead-time td, and the corresponding

likelihood evaluated. The maximum likelihood estimates of the parameters, including the dead­

time, can be calculated through maximizing the likelihoods with respect to the dead-time. That is,

the intensity function A(t; Ht) and the corresponding likelihood function L(Ao, a, {3, Ht) as defIned

in Section 2 become indexed by td' Then the maximum likelihood estimates Ao, &, 13, and td are

values such that

max {max Ltl', Ht)}
td ED! -

is achieved.

For a fIxed dead-time value, the fIrst likelihood equation, ~=.xo(&, p), defInes a smooth

surface in the space spanned by ~, &, and 13, and hence a surface in the parameter space. It is

difficult to illustrate this surface in the parameter space spanned by Ao, a, {3, and td' The numbers

listed in Table I should help to visualize how the log-likelihood function varies as each of the

parameters changes. The maximum likelihood estimates are ~=0.1996, &=2.50, 13=7.0, and

td=1.87.

The spike-train simulated using the maximum likelihood estimates is compared with

NERVEl. The main evidence validating the model is the Kolmogorov-Smirnov two sample test

7



result. The test statistic is 1.1068, and the p-value is 0.1641. This test is meaningful here since the

spike-train is renewal. The estimated intensity function is plotted over the empirical hazard rate

(Fig. 6) to illustrate the degree of fit. The univariate statistics of the two spike-trains show that the

skewness of NERVE1 is much greater than that of the one simulated.
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5. The Non-ren,../ ~NERVE2

When auto-correlation is detected in spike-train data, one would like to determine the

order and structure of the correlation. One method, as suggested by Johnson et at, 1986, that is

helpful is to plot the conditional interval histograms of the spike-train. Conditional interval

histograms are plotted as follows: group the pairs of interspike intervals (Tk_i' Tk) according to the

magnitude of the conditioning interval, i.e., the first one in "each pair, then plot the histogram of

the latter one for each group. The integer i denotes the order of the conditioning, with 1 being the

one most frequently used. If the spike-train is renewal, then the conditional interval histograms will

be identical. In the non-renewal case, the conditional interval histograms can differ in a number of

ways.

There is a special class of spike-trains that produce conditional interval histograms

differing only in the location but not in shape (see Johnson et al., 1986). It is expected that once

the shifting effect contributed by Tk_i is removed from the conditioned intervals Tk' then the

resultant new spike-train will be free of the type of dependence that used to exist between Tk_i and

T k • This is what exactly a whitening procedure does and creates a whitened spike-train { T'n;

n ~ 1} that is renewal. One way to determine the effect of the conditioning interval is by

computing the conditional expectation of the k-th interspike interval given the (k - i)-th interspike

interval. That is,

E[ /Slk I Tk_J = C· g(Tk_i)

where C is a positive constant. The resultant (whitened) spike-train { T'n; n ~ 1} is defined to be

{ h[Tn-g(Tn-J}; n ~ 1},

for some function h(·). This implies that the conditional mean plot in Step 2, or some plots

equivalent to it, can be used to find the function g(.) within a certain range. If geTn-i) is

nonconstant for some i>l, i.e., higher than first order dependence, then these expectations should

be redone simultaneous conditioning on the i previous intervals. This produces a multivariate form

for g(.) and hence requires larger data sets. For our example, only first order dependence was

indicated.

The correlogram of NERVE2 in Fig. 2.2.(a) shows that first order correlation is the only

significant one and the conditional mean plot in Fig. 2.2.(b) shows a nearly linear pattern. The

conditional interval histograms in Fig. 4(a) show that nothing more than a shift is observed among

the histograms. That is, the above whitening procedure seems appropriate here. In determining the
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functional form g(.) mentioned above, for reasons to be discussed in Section 6, a simple linear

function in Tko-I is not considered despite that the conditional mean plot is almost perfectly linear

over a certain range. Instead, the corresponding conditional mean plot for the pairs (Tk_l' IOgTk) is

used and shown in' Fig. 5. The ordinary linear regression gave a slope estimate of -0.043. That is

E[ log(lS/n ) I T n-J =-0.043· T n-l + C.

So the whitened spike-train is defined as

{ Tn' exp(0.043. T n-l)i n ~ 1}.

The Wald-Wolfowitz runs test gives 1.1568 which is insignificant. The correlogram (Fig. 2.3.(a)),

conditional mean plot (Fig. 2.3.(b)), and the conditional interval histograms (Fig. 4(b)) of the

whitened NERVE2 all support that the whitening is working. The periodogram test statistics of

0.0275 assures that it is renewal. The whitened spike-train NERVE2 is now ready for maximum

likelihood estimation.

The model used here for the whitened NERVE2 is the same as in Section 4. The computed

estimates are: t~=0.5, &=4.0, P=5.5, ).0=1.3646. The behavior of the likelihood surface is

summarized in Table II. The spike-train reproduced using this set of parameter estimates and the

whitening procedure gives a correlogram (Fig. 2(a)) , conditional mean plot (Fig. 2(b), and

-eonditional interval histograms (Fig. 4(c)) that are very similar to those of the original NERVE2.

As for the verification of the identity of two non-renewal spike-trains, there is not a

generally established criterion. One possible way to do it is to combine the results of the

comparisons between the two sets of conditional interval histograms and the significant correlation

coefficients of the two target spike-trains. Since the non-renewal spike-train, NERVE2, was

assumed to have a fairly simple correlation structure, the criteria emphasize only on the first order

correlation rather than from a general joint distribution point of view (c.f. Cox and Isham, 1980).
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6. Discussion

In the last section, despite the obvious linear relationship between Tn and T n+l' the function

E[ logrn+ll T ,J= b· Tn + C

was used for whitening NERVE2 instead of a simple linear regression of T n+l on Tn' The reason

for this choice is because an exact AR(l) analog whitening procedure is not reversible. That is, if

the linear regression model

was used, then the whitened spike-train would be

T ' n = Tn - b· T n-l .

The whitening will not create any problem if b is negative, i.e. Tin will be positive. A negative first

order correlation coefficient is often observed in spontaneous spike-trains.

The difficulty occurs when we want to simulate the original spike-train by using estimates

-of the regression parameters and reversing the whitening procedure, Le., taking

Tn = Tin + b'Tn _I ,

This equation does not guarantee that Tn is a positive random variable since b is negative. One

way to try to circumvent this difficulty was outlined in Section 5.

When a point process is renewal, its intensity function is identical to its hazard function

(see Snyder, 1975), thus the shape of the hazard rate of a spike-train has a major impact on the

selection of the intensity model in the algorithm proposed in this report. As stated in Section 4, the

constants governing the shape of the hypothesized intensity function need to be estimated. From

the hazard rate plot, we can determine possible ranges for the constants and then proceed with a

grid-search procedure.
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Appendix: Derivation ofLikelihood Equations

Without loss of generality, the dead-time td will be dropped from the intensity function for this

derivation.

n JT' . nlog L(>.o, a, f31 Ht)=- E 1'\0· (l-exp(-[t/f3?))dt + E log{,\o· (l-exp(-[Ti/f3?))J=1 0 =1

where Ga b(·) is the cumulative distribution function of gamma(a,b). Then,

810gL(,\0, a, f31 Ht) _ f3 . rll). ~ G If .1/3''JOI) /"-0
8'\0 wn-tZt ra .£.J

1
I/Ol, III Til, J + n "'o-

f-

where Ga, b(·) is the probability density function of gamma(a,b). Hence ~o can be expressed as a

function of & and Pas follows:

~ PIn AA
>.o=n/(wn- -;::. rea)· E GIlA /[Ti/f3?)),

a =1 10l,

and the maximum log-likelihood (m.l.l.) is

10gL().0, ti, PI Ht)= -n+n.log).o+ Elog(1-exp(-[Ti/8?)).=1
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TABLE I

td=1.510 td=1.630

a p ~ m.l.l.• a p io m.l.l.•

0.500 20.000 0.2264 -6361.810 0.500 20.000 0.2295 -6344.262

1.000 20.000 0.3382 -6118.952 1.000 20.000 0.3438 -6108.733

1.S00 10.500 0.2443 -6026.363 1.500 10.000 0.2384 -6019.673

2.000 8.500 0.2172 -5977.462 2.000 8.000 0.2095 -5973.962

2.500 7.500 0.2007 -5959.430 2.500 7.500 0.2045 -5958.362

3.000 7.000 0.1927 -5960.519 3.000 7.000 0.1963 -5961.747

3.500 6.500 0.1832 -5972.635 3.500 6.500 0.1866 -5974.956

td=1.750 td=1.870

a p io m.l.l.• a jj io m.l.l.•

0.500 20.000 0.2327 -6326.689 0.500 20.000 0.2360 -6309.099

1.000 20.000 0.3495 -6098.800 1.000 20.000 0.3554 -6089.185

1.500 9.500 0.2324 -6013.277 1.500 9.500 0.2365 -6006.883

2.000 8.000 0.2133 -5970.306 2.000 8.000 0.2173 -5967.642

2.500 7.000 0.2960 -5958.133 2.500 7.000 0.1996 -5957.358

3.000 6.500 0.1875 -5963.839 3.000 6.500 0.1910 -5965.192

3.500 6.500 0.1901 -5979.156 3.500 6.500 0.1937 -5985.370

td=1.990 td=2.110

a p i o m.l.l.• a p i o m.l.l.•

0.500 20.000 0.2394 -6291.509 0.500 20.000 0.2429 -6273.940

1.000 19.000 0.3475 ~6079.888 1.000 18.000 0.3394 -6070.737

1.500 9.000 0.2304 -6000.857 1.500 9.000 0.2345 -5995.220

2.000 7.500 0.2094 -5964.530 2.000 7.500 0.2132 -5962.579

2.500 7.000 0.2034 -5958.025 2.500 6.500 0.1948 -5958.601

3.000 6.500 0.1946 -5968.337 3.000 6.500 0.1983 -5973.441

3.500 6.500 0.1974 -5993.758 3.500 6.500 0.2012 -6004.514
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td=:2.230 td=2.350

& p io m.l.l.• a p io m.I.I.•

0.500 20.000 0.2464 -6256.418 0.500 20.000 0.2500 -6238.996

1.000 16.500 0.3237 -6061.763 1.000 15.500 0.3146 -6053.057

1.500 8.500 0.2281 -5089.773 1.500 8.000 0.2217 -5985.064

2.000 7.000 0.2053 -5960.681 2.000 7.000 0.2091 -5959.875

2.500 6.500 0.1984 -5960.027 2.500 6.500 0.2022 -5963.477

3.000 6.500 0.2021 -5980.729 3.000 6.500 0.2060 -5990.557

3.500 6.500 0.2051 -6017.904 3.500 6.500 0.2091 -6034.336

td=2.470 td=2.590

a p i o m.l.l.• a p i o m.l.l.•

0.500 20.000 0.2537 -6221.790 0.500 20.000 0.2576 -6205.728

1.000 14.500 0.3052 -6044.854 1.000 13.500 0.2954 -6039.025

1.500 8.000 0.2257 -5981.098 1.500 7.500 0.2190 -5980.863

2.000 6.500 0.2011 -5960.221 2.000 6.500 0.2049 -5965.377

2.500 6.500 0.2060 -5969.591 2.500 6.500 0.2100 -5983.107

3.000 6.500 0.2100 -6003.691 3.000 6.500 0.2141 -6025.826

3.500 6.500 0.2133 -6054.716 3.500 6.500 0.2175 -6085.680

*m.l.l is the abbreviation for maximum log-likelihood within the same ( td, a, p, io) combination.
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TABLE II

td=0.180 td=0.260

& P ~ m.l.l.• & p ~O m.l.l.•

2.000 7.000 1.0732 -3719.347 2.000 7.000 1.1124 -3697.096

2.500 7.000 1.3350 -3556.148 2.500 7.000 1.3919 -3538.967

3.000 7.000 1.6192 -3455.034 3.000 7.000 1.6961 -3443.885

3.500 7.000 1.9214 -3405.447 3.500 6.900 1.9414 -3401.172

4.000 6.200 1.5477 -3389.446 4.000 6.000 1.4840 -3387.642

4.500 5.600 1.2548 -3385.999 4.500 5.500 1.2558 -3386.692

5.000 5.000 1.1340 -3391.928 5.000 5.200 1.1322 -3394.249

td=0.340 td=0.420

& p ~o m.I.I.• & p ~o m.I.I.•

2.000 7.000 1.1547 -3675.162 2.000 7.000 1.1992 -3653.584

2.500 7.000 1.4521 -3522.409 2.500 7.000 1.5158 -3506.528

3.000 7.000 1.7778 -3433.679 3.000 7.000 1.8649 -3424.482

3.500 6.700 1.8826 -3397.509 3.500 6.500 1.8236 -3394.289

4.000 5.800 1.4214 -3386.317 4.000 5.600 1.3600 -3385.552

4.500 5.400 1.2567 -3387.280 4.500 5.200 1.1938 -3388.653

5.000 5.100 1.1302 -3397.263 5.000 4.900 1.0686 -3400.661

td=0.500 td=0.580

& p ~o m./.I.• & p ~o m.J.I.•

2.000 7.000 1.2462 -3632.410 2.000 7.000 1.2958 -3611.699

2.500 7.000 1.5834 -3491.386 2.500 7.000 1.6551 -3477.063

3.000 7.000 1.9575 -3416.372 3.000 7.000 1.0562 -3409.448

3.500 6.200 1.6905 -3391.508 3.500 6.000 1.6324 -3389.273

4.000 5.500 1.3646 -3385.238 4.000 5.300 1.3035 -3385.638

4.500 5.100 1.1939 -3390.782 4.500 4.900 1.1328 -3393.625

5.000 4.800 1.0661 -3404.775 5.000 4.700 1.0634 -3409.801
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td =0.660 td=0.740

a p '\0 m.l.l.• a p '\0 m.I.I.•

2.000 7.000 1.3482 -3591.532 2.000 7.000 1.4036 -3572.041

2.500 7.000 1.7311 -3463.665 2.500 7.000 1.8119 -3451.365

3.000 7.000 2.1614 -3403.841 3.000 7.000 2.2737 -3399.760

3.500 5.800 1.5744 -3387.701 3.500 5.600 1.5166 -3386.985

4.000 5.200 1.3070 -3386.838 4.000 5.000 1.2465 -3388.953

4.500 4.800 1.1321 -3397.238 4.500 4.700 1.1312 -3402.142

5.000 4.500 1.0044 -3415.683 5.000 4.400 1.0014 -3422.570

td =0.820 td =0.900

-a p '\0 m.I.I.• a p '\0 m.l.l.•

2.000 7.000 1.4621 -3553.528 2.000 7.000 1.5241 -3537.807

2.500 7.000 1.8978 -3440.542 2.500 7.000 1.9891 -3433.472

3.000 6.700 2.1463 -3397.225 3.000 6.300 1.9451 -3398.467

3.500 5.400 1.4990 -3387.614 3.500 5.200 1.4019 -3392.728

4.000 4.900 1.2489 -3392.758 4.000 4.700 1.1892 -3401.503

4.500 4.500 1.0716 -3408.536 4.500 4.400 1.0701 -3420.753

5.000 4.300 0.9982 -3431.461 5.000 4.200 0.9950 -3446.830

*m.l.l is the abbreviation for maximum log-likelihood within the same ( td , a, p, ,\o) combination.
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Figure Legend

Fig. 1
This is the procedure outline flow-chart.

In each column, (a) is the correlogram, (b) is the conditional mean plot with fixed cellsize. The

correlogram is done by plotting the sample correlation coefficients up to order 20 against their

orders. The conditional mean plots in (b) are constructed by first grouping the pairs (Tn, Tn+l)

with respect to the magnitude of the first component Tn such that approximately equal

number of pairs are in each group. Then plot the means of the second components

Tn+l against the midpoints of the intervals in which their partners Tn fell in. In (b), the

cellsize for NERVEl and NERVE2 are 40 and 50, respectively.

These are the conditional interval histograms for: (a), the original NERVEl, and (b), the

simulated NERVE1. There are 400 interspike intervals in each histograms and the mean

conditioning interval lengths are arranged in an increasing order.

The conditional interval histograms for: (a) original NERVE2j (b) whitened NERVE2j and (c)

simulated NERVE2. There are 400 observations in each histogram.

This is the conditional mean plot for the pairs (Tn' lag(Tn+1)) rather than for the original

pairs.

The hazard rate plot with the hypothesized intensity function of NERVE1. The binwidth is

1.0.
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Procedures outline flow chart

Start.

Check stationarity. nn .
lYe6 Stop.

Check independence of lSI's. nn
,

Lye. Prepare the conditional lSI

Check the renewal property. nn histograms to determine the
1tie. type of dependence.

Prepare lSI histogram and 1
hazard rate plot. Select a Apply appropriate whitening

suitable intensity function. procedure.

1

Execute maximum likelihood 1

computation. The lSI's are independent but

1 not identically distributed.

Simulate a data with the L

estimated parameters. Stop.
f

!
Perform model validation. nn

1lye.

Conclusion. Discuss probable reasons.

1 1
Stop. Stop.

Fig. 1
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ORIGINAL NERVE1 SIMULATED NERVE1
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HAZARD RATE PLOT OF NERVE1
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