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Abstract

The Support Vector Machine (SVM) has been a popular classification method

in machine learning and has enjoyed great successes for many applications. How-

ever, the standard SVM cannot select variables automatically and consequently

its solution typically utilizes all input variables. This makes it difficult to identify

important variables which are predictive of the response and can be a concern for

many problems. In this paper, we propose a novel type of regularization for the

multicategory SVM (MSVM), which automates the process of variable selection

and results in a classifier with enhanced interpretability and improved accuracy,

especially for high dimensional low sample size data. The MSVM generally re-

quires estimation of multiple discriminating functions and applies the argmax rule

for prediction. For each individual variable, we propose to characterize its impor-

tance by the supnorm of its coefficient vector associated with different functions,

and then minimize the MSVM hinge loss function subject to a penalty on the

sum of supnorms. The adaptive regularization, which imposes different penalties

on different variables, is studied as well. Moreover, we develop an algorithm to

compute the proposed supnorm MSVM effectively. Finally, the performance of the

proposed method is demonstrated through simulation studies and an application

to microarray gene expression data.

Key words: L1-norm penalty, multicategory, solution path, sup-norm, SVM.

1 Introduction

In supervised learning problems, we are given a training set of n examples from K

different populations. For each example in the training set, we observe its covariate

xi ∈ R
d and the corresponding label yi indicating the membership. Our ultimate goal

is to learn a classification rule which can accurately predict the class label of a future

example based on its covariate. Among many classification methods, the Support Vector

Machine (SVM) has gained much popularity in both machine learning and statistics. For
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references on the binary SVM, see Vapnik (1998), Christianini and Shawe-Taylor (2000),

Schölkopf and Smola (2002), and references therein. Recently a few attempts have been

made to generalize SVM to multiclass problems, such as Vapnik (1998), Weston and

Watkins (1999), Crammer and Singer (2001), Lee, Lin and Wahba (2004), and Liu and

Shen (2006).

While the SVM outperforms many other methods in terms of classification accuracy

in numerous real problems, the implicit nature of its solutions makes it less attractive in

providing insights into the predictive ability of individual variables. Oftentimes, selecting

relevant variables is the primary goal of data mining. For the binary SVM, Bradley and

Mangasarian (1998) demonstrated the utility of the L1 penalty, which can effectively

select variables by shrinking small or redundant coefficients to zero. Zhu et al. (2003)

provides an efficient algorithm to compute the entire solution path for the L1-norm SVM.

Other forms of penalty have been also studied in the context of binary SVMs, such as the

L0 penalty (Weston et al., 2003), the SCAD penalty (Zhang et al., 2006), the combination

of L0 and L1 penalty (Liu and Wu, 2006), the combination of L1 and L2 penalty (Wang

et al. 2006), and others (Zou, 2006).

For multiclass problems, variable selection becomes more complex than the binary

case, since the MSVM requires estimation of multiple discriminating functions, among

which each function has its own subset of important predictors. One natural idea is to

extend the L1 SVM to L1 MSVM, as done in the recent work of Lee et al. (2005) and Wang

and Shen (2006). However, the L1 penalty does not distinguish the source of coefficients.

It treats different coefficients equally, no matter they correspond to the same variable

or different variables. In this paper, we propose a new regularized MSVM for effective

variable selection. In contrast to the L1 MSVM, which imposes a penalty on the sum of

absolute values of all coefficients, we penalize the sup-norm of the coefficients associated

with each variable. The proposed method is shown to be able to achieve a higher degree

of model parsimony than the L1 MSVM without compromising classification accuracy.

This paper is organized as follows. Section 2 formulates the sup-norm regularization for
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the MSVM. Section 3 proposes an efficient algorithm to implement the MSVM. Section

4 discusses an adaptive approach to improve performance of the sup-norm MSVM by

allowing different penalties for different covariates. Numerical results on simulated and

gene expression data are given in Sections 5 and 6, followed by a summary.

2 Methodology

InK-category classification problems, we code y as {1, . . . , K} and define f = (f1, . . . , fK)

as a decision function vector. Here fj, a mapping from the input domain R
d to R,

represents the class j; j = 1, . . . , K. A classifier induced by f ,

φ(x) = arg max
k=1,...,K

fk(x),

assigns a new input vector x to the class with the largest fk(x). To ensure uniqueness

of the solution, the sum-to-zero constraint
∑K

k=1 fk = 0 is enforced. Given a classifier f ,

its generalization performance is measured by the generalization error, GE(f) = P (Y 6=
argmaxk fk(x)).

We assume the n training pairs {(xi, yi), i = 1, . . . , n} are independently and identi-

cally distributed according to an unknown probability distribution P (x, y), with pk(x) =

Pr(Y = k|X = x) the conditional probability of class k given X = x. The Bayes rule

which minimizes the GE is then given by

φB(x) = arg min
k=1,...,K

[1 − pk(x)] = arg max
k=1,...,K

pk(x). (2.1)

For linear classification rules, we start with fk(x) = bk +
∑d

j=1wkjxj, k = 1, . . . , K.

The sum-to-zero constraint then becomes

K
∑

k=1

bk = 0,
K

∑

k=1

wkj = 0, j = 1, . . . , d. (2.2)

For nonlinear problems, we assume fk(x) = bk +
∑q

j=1wkjhj(x) using a set of basis func-

tions {hj(x)}. This linear representation of a nonlinear classifier through basis functions
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will greatly facilitate the formulation of the proposed method. Alternatively nonlinear

classifiers can also be achieved by applying the kernel trick (Boser et al., 1992). However,

the kernel classifier is often given as a black box function, where the contribution of each

individual covariate to the decision rule is too implicit to characterize. Therefore we will

use the basis expansion to construct nonlinear classifiers in the paper.

The standard multicategory SVM (MSVM; Lee et al. 2004) solves

1

n

n
∑

i=1

K
∑

k=1

I(yi 6= k)[fk(xi) + 1]+ + λ
K

∑

k=1

d
∑

j=1

w2
kj, (2.3)

under the sum-to-zero constraint. To achieve variable selection, Wang and Shen (2006)

proposed to impose the L1 penalty on the coefficients and the corresponding L1 MSVM

then solves

min
b,w

1

n

n
∑

i=1

K
∑

k=1

I(yi 6= k)[bk + wT
k xi + 1]+ + λ

K
∑

k=1

d
∑

j=1

|wkj| (2.4)

under the sum-to-zero constraint. The L1 MSVM treats all wkj’s equally without dis-

tinction. As opposed to this, we take into account the fact that some of the coefficients

are associated with the same covariate, therefore it is more natural to treat them as a

group rather than separately.

Define the weight matrix W of size K×d such that its (k, j) entry is wkj. The structure

of W is shown as follows.

x1 · · · xj · · · xd

Class 1 w11 · · · w1j · · · w1d

· · · · · · · · · · · · · · ·
Class k wk1 · · · wkj · · · wkd

· · · · · · · · · · · · · · ·
Class K wK1 · · · wKj · · · wKd
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Throughout the paper, we use wk = (wk1, . . . , wkd)
T to represent the kth row vector of

W , and w(j) = (w1j, . . . , wKj)
T for the jth column vector of W . According to Crammer

and Singer (2001), the value bk + wT

kx defines the similarity score of the class k, and the

predicted label is the index of the row attaining the highest similarity score with x. We

define the sup-norm for the coefficient vector w(j) as

‖w(j)‖∞ = max
k=1,··· ,K

|wkj|. (2.5)

In this way, the importance of each covariate xj is directly controlled by its largest

absolute coefficient. We propose the sup-norm regularization for MSVM:

min
b,w

1

n

n
∑

i=1

K
∑

k=1

I(yi 6= k)[bk + wT
k xi + 1]+ + λ

d
∑

j=1

‖w(j)‖∞,

subject to 1Tb = 0, 1Tw(j) = 0, for j = 1, . . . , d, (2.6)

where b = (b1, . . . , bK)T. For three-class problems, we can show that the L1 MSVM and

the new proposed sup-norm MSVM give identical solutions after adjusting the tuning

parameters, which is due to the sum-to-zero constraints on w(j)’s. This equivalence,

however, does not hold for the adaptive procedures introduced in Section 4.

Lemma 2.1. When K = 3, the L1 MSVM (2.4) and the sup-norm MSVM (2.6) are

equivalent.

When K > 3, our empirical experience shows that the sup-norm MSVM generally

performs well in terms of classification accuracy. More importantly, the sup-norm MSVM

tends to make the solution more sparse than the L1 MSVM, and identifies important

variables more precisely. To further see the difference between the L1 penalty and the sup-

norm penalty, we note that the Kd coefficients fall into d groups, each of size K. A noise

variable is removed if and only if all corresponding K estimated coefficients are 0. On the

other hand, if a variable is important with a positive sup-norm, the sup-norm penalty,

unlike the L1 penalty, does not put any additional penalties on the otherK−1 coefficients.

This is desirable since a variable will be kept in the model as long as the sup-norm of the

K coefficient is positive. No further shrinkage is needed for the remaining coefficients

in terms of variable selection. For illustration, we plot the region 0 ≤ t1 + t2 ≤ C in
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Figure 1, where t1 = max(w11, w21, w31, w41) and t2 = max(w12, w22, w32, w42). Clearly,

the sup-norm penalty shrinks sum of two maximums corresponding to two variables. This

helps to lead to more parsimonious models. In short, in contrast to the L1 penalty, the

sup-norm utilizes the group information of the decision function vector and consequently

the sup-norm MSVM can deliver better variable selection.
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Figure 1: Illustrative plot of the shrinkage property of the sup-norm.

The tuning parameter λ in (2.6) balances the tradeoff between data fit and model

parsimony. A proper choice of λ is important to assure good performance of the resulting

classifier. If λ chosen is too small, the procedure tends to overfit the training data and

gives a less sparse solution; on the other hand, if λ is too large, the solution can become

very sparse but possibly with a low prediction power. The choice of parameters is typically

done by minimizing either an estimate of generalization error or other related performance

measure. For simulations, we generate an extra independent tuning set to choose the

best λ. For real data, we use leave-one-out cross validation of the misclassification rate

to select λ.
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3 Computational Algorithms

In this section we show that the optimization problem (2.6) can be converted to a linear

programming (LP) problem, and can therefore be solved using standard LP techniques

in polynomial time. This great computational advantage is very important in real appli-

cations, especially for large data sets.

Define the n × K matching matrix A by aik = I(yi 6= k) for i = 1, . . . , n and k =

1, . . . , K. First we introduce slack variables ξik such that

ξik =
[

bk + wT
k xi + 1

]

+
for i = 1, . . . , n; k = 1, . . . , K. (3.1)

The optimization problem (2.6) is then equivalent to

min
b,w,ξ

1

n

n
∑

i=1

K
∑

k=1

aikξik + λ
d

∑

j=1

‖w(j)‖∞,

subject to 1Tb = 0, 1Tw(j) = 0, j = 1, . . . , d,

ξik ≥ bk + wT
k xi + 1, ξik ≥ 0, i = 1, . . . , n; k = 1, . . . , K. (3.2)

To further simplify (3.2), we introduce a second set of slack variables

ηj = ‖w(j)‖∞ = max
k=1,...,K

|wkj|,

which add some new constraints to the problem:

|wkj| ≤ ηj, for k = 1, . . . , K; j = 1, . . . , d.

Finally write wkj = w+
kj − w−

kj, where w+
kj and w−

kj denote the positive and negative

parts of wkj, respectively. Similarly, w+
j and w−

j respectively consist of the positive and

negative parts of components in wj. Denote η = (η1, . . . , ηd)
T ; then (3.2) becomes

min
b,w,ξ,η

1
n

∑n

i=1

∑K

k=1 aikξik + λ
∑d

j=1 ηj,

subject to 1Tb = 0, 1T [w+
(j) − w−

(j)] = 0, j = 1, . . . , d,

ξik ≥ bk + [w+
k − w−

k ]Txi + 1, ξik ≥ 0, i = 1, . . . , n; k = 1, . . . , K,

w+
(j) + w−

(j) ≤ η, w+
(j) ≥ 0, w−

(j) ≥ 0, j = 1, . . . , d. (3.3)
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4 Adaptive Penalty

In (2.4) and (2.6), same weights are used for different variables in the penalty terms,

which may be too restrictive. In this section, we suggest that different variables should

be penalized differently according to their relative importance. Ideally, large penalties

should be imposed on redundant variables in order to eliminate them from models more

easily; and small penalties should be used on important variables in order to retain them

in the final classifier. Motivated by this, we consider the following adaptive L1 MSVM:

min
b,w

1

n

n
∑

i=1

K
∑

k=1

I(yi 6= k)[bk + wT
k xi + 1]+ + λ

K
∑

k=1

d
∑

j=1

τkj|wkj|,

subject to 1T b = 0, 1Tw(j) = 0, for j = 1, . . . , d, (4.1)

where τkj > 0 represents the weight for coefficient wkj.

Due to the special form of the sup-norm SVM, we consider the following two ways to

employ the adaptive penalties:

[I]

min
b,w

1

n

n
∑

i=1

K
∑

k=1

I(yi 6= k)[bk + wT
k xi + 1]+ + λ

d
∑

j=1

τj‖w(j)‖∞,

subject to 1Tb = 0, 1Tw(j) = 0, for j = 1, . . . , d, (4.2)

[II]

min
b,w

1

n

n
∑

i=1

K
∑

k=1

I(yi 6= k)[bk + wT
k xi + 1]+ + λ

d
∑

j=1

‖(τw)(j)‖∞,

subject to 1Tb = 0, 1Tw(j) = 0, for j = 1, . . . , d, (4.3)

where the vector (τw)(j) = (τ1jw1j, . . . , τKjwKj)
T for j = 1, ..., d.

In (4.1), (4.2), and (4.3), the weights can be regarded as leverage factors, which are

adaptively chosen such that large penalties are imposed on coefficients of unimportant

covariates and small penalties on coefficients of important ones. Let w̃ be the solution
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to standard MSVM (2.3) with the L2 penalty. Our empirical experience suggests that

τkj =
1

|w̃kj|
is a good choice for (4.1) and (4.3), and

τj =
1

‖w̃(j)‖∞
is a good choice for (4.2). If w̃kj = 0, which implies the infinite penalty on wkj, we set

the corresponding coefficient solution ŵkj to be zero.

In terms of computational issues, all three problems (4.1), (4.2), and (4.3) can be

solved as LP problems. Their entire solution paths can be easily obtained by minor

modifications of the algorithms in Wang and Shen (2006) and in Section 3.

5 Simulation

In this section, we demonstrate the performance of six MSVM methods: the standard L2

MSVM, L1 MSVM, sup-norm SVM, adaptive L1 MSVM, and the two adaptive sup-norm

MSVMs. Three simulation models are considered: (1) a linear example with four classes;

(2) a linear example with five classes; (3) a nonlinear example with three classes. In

each simulation setting, n observations are simulated as the training data, and another

n observations are generated for tuning the regularization parameter λ for each proce-

dure. To test the accuracy of the classification rules, we also independently generate n′

observations as a test set. The tuning parameter λ is selected via a grid search over the

grid: log2(λ) = −14 : 1 : 15. When a tie occurs, we choose the larger value of λ.

We conduct 100 simulations for each classification method under all settings. Each

fitted classifier is then evaluated in terms of its classification accuracy and variable se-

lection performance. For each method, we report its average testing error, the number

of correct and incorrect zero coefficients, and the model size. We also summarize the

frequency of each variable being selected over 100 runs. All simulations are done using

the optimization software CPLEX.
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5.1 Four-Class Linear Example

Consider a four-class example, with the input vector x in a 20-dimensional space. The

first two components of the input vector are generated from a mixture Gaussian in the fol-

lowing way: for each class k = 1, 2, 3, 4, generate (x1, x2) independently from N(µk, σ
2
1I2),

with µ1 = (
√

2,
√

2), µ2 = (−
√

2,
√

2), µ3 = (−
√

2,−
√

2), µ4 = (
√

2,−
√

2), and the

remaining eighteen components are i.i.d. generated from N(0, σ2
2). We generate the same

number of observations in each class. Here σ1 =
√

2, σ2 = 1, n = 200, and n′ = 40, 000.

Table 1: Classification and variable selection results for the four-class linear example in

Section 5.1.

Method Testing Error Correct Zeros Incorrect Zeros Model Size

L2 0.346 (0.029) 0.00 0.00 20.00

L1 0.418 (0.036) 18.11 0.10 17.92

Adapt-L1 0.411(0.038) 29.34 0.13 15.69

Supnorm 0.296 (0.006) 70.00 0.00 2.50

Adapt-supI 0.296 (0.006) 71.96 0.00 2.01

Adapt-supII 0.327 (0.029) 69.00 0.00 2.75

Bayes 0.292 (—) 72 0 2

Table 1 summarizes the performance of various procedures. In terms of classification

accuracy, the sup-norm MSVM and its type I adaptive variant are the best; the corre-

sponding testing error 0.296 is very close to the Bayes error. Over totally 100 runs, the

L2 SVM never selects the correct model, the L1 MSVM and the adaptive L1 MSVM

both select the correct model 4 times, the sup-norm SVM selects the correct model 80

times, type I adaptive supnorm MSVM selects the correct model 99 times, and the type

II selects the correct model 87 times.

Table 2 shows the frequency of each variable being selected by each procedure in 100

runs. The type II sup-norm MSVM performs the best among all. Overall the adaptive
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MSVMs show significant improvement over the non-adaptive classifiers in terms of both

classification accuracy and variable selection.

5.2 Five-Class Example

The setting of this example is similar to the four-class example, except that the five

centers are

µi = 2 (cos([2k − 1]π/5), sin([2k − 1]π/5)) , k = 1, 2, 3, 4, 5,

and x is 10-dimensional. The variances of X1 and X2 are both σ2
1 = 2 and those of the

other eight X’s are σ2
2 = 1. We have n = 250 and n′ = 50, 000 respectively.

Table 3: Classification and variable selection results for the five-class example in Section

5.2.

Method Testing Error Correct Zeros Incorrect Zeros Model Size

L2 0.454 (0.034) 0.00 0.00 10.00

L1 0.558 (0.022) 24.88 2.81 6.60

Adapt-L1 0.553 (0.020) 30.23 2.84 5.14

Supnorm 0.453 (0.020) 33.90 0.01 3.39

Adapt-supI 0.455 (0.024) 39.92 0.01 2.08

Adapt-supII 0.457 (0.046) 39.40 0.09 2.17

Bayes 0.387 (—) 41 0 2

Table 3 shows that, in terms of classification accuracy, the L2 MSVM, supnorm MSVM,

and two adaptive supnorm MSVMs are more accurate than the L1 SVM and the adaptive

L1 SVM. In term of identifying correct models in the 100 runs, the L2 SVM never selects

the correct model, the L1 MSVM selects the correct model 21 times, the adaptive L1

MSVM selects the correct model 40 times, the sup-norm MSVM selects the correct model

68 times, and both adaptive supnorm MSVMs select the correct model at least 97 times.
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Table 2: Variable selection frequency results of the four-class linear example in Section 5.1.

Selection Frequency

Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

L2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

L1 100 100 90 86 90 85 90 90 85 86 91 92 89 93 90 86 92 81 89 87

Adapt-L1 100 100 82 78 79 78 79 72 75 82 75 76 76 74 73 77 77 72 72 72

Supnorm 100 100 4 3 3 5 0 2 1 3 4 5 2 3 2 2 3 3 1 4

Adapt-supI 100 100 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Adapt-supII 100 100 4 6 5 3 5 4 4 6 3 2 2 4 4 4 6 6 3 4
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Table 4 shows the frequency of each variable being selected by all six procedures in 100

runs. Overall, the adaptive sup-norm MSVMs outperform other procedures.

Table 4: Variable selection frequency results of the five-class example in Section 5.2.

Selection Frequency

Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

L2 100 100 100 100 100 100 100 100 100 100

L1 100 100 59 55 60 58 56 61 57 54

Adapt-L1 100 100 44 40 43 37 39 41 35 35

Supnorm 100 100 15 17 20 17 14 20 17 19

Adapt-supI 100 100 1 1 0 2 1 1 1 1

Adapt-supII 100 100 2 2 2 2 2 2 3 2

5.3 Nonlinear Example

In this nonlinear 3-class example, we first generate x1 ∼ Unif[−3, 3] and x2 ∼ Unif[−6, 6].

Define the functions

f1 = −2x1 + 0.2x2
1 − 0.1x2

2 + 0.2,

f2 = −0.4x2
1 + 0.2x2

2 − 0.4,

f3 = 2x1 + 0.2x2
1 − 0.1x2

2 + 0.2,

and set pk(x) = P (Y = k|X = x) ∝ exp(fk(x)), k = 1, 2, 3. The Bayes boundary is

plotted in Figure 2. We also generate three noise variables xi ∼ N(0, σ2), i = 3, 4, 5.

To achieve nonlinear classification, we fit the nonlinear MSVM by including the five

main effects, their square terms, and their cross products as the basis functions. In this

example, we set σ = 2, n = 200, and n′ = 40, 000.
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Figure 2: Bayes boundary for the nonlinear 3-class example in Section 5.3.

Table 5: Classification and variable selection results for the nonlinear example in Section

5.3.

Method Testing Error Correct Zeros Incorrect Zero Model Size

L2 0.167 (0.013) 0.00 0.00 20.00

L1 0.151 (0.012) 21.33 0.00 14.91

Adapt-L1 0.140 (0.010) 43.06 0.00 6.92

Supnorm 0.150 (0.012) 22.54 0.00 14.43

Adapt-supI 0.140 (0.010) 40.75 0.00 7.21

Adapt-supII 0.140 (0.0105) 41.37 0.00 6.21

Bayes 0.120 (—) 52 0 3

The results are summarized in Tables 5 and 6. Clearly, the adaptive L1 SVM and

the two adaptive sup-norm SVMs deliver better accurate classification and yield more

spare classifiers than the other methods. In this example, there are correlations among
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Table 6: Variable selection frequency results of nonlinear example.

Selection Frequency

Method x1 x2
1 x2

2 x2 x3 x4 x5 x2
3 x2

4 x2
5 x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5

L2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

L1 100 100 100 69 44 50 43 80 84 89 80 55 57 65 86 88 90 69 72 70

Adapt-L1 100 100 100 33 21 21 20 24 18 22 31 20 18 20 28 26 31 20 17 22

Supnorm 100 100 100 67 37 42 34 84 80 75 79 62 58 55 87 89 91 62 68 73

Adapt-supI 100 100 100 31 21 21 26 21 25 24 31 22 17 28 30 29 30 24 16 25

Adapt-supII 100 100 100 22 18 12 19 18 16 18 25 15 14 19 30 23 22 16 17 17
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Table 7: Class distribution of the microarray exmaple.

Data set NB RMS BL EWS Total

Training 12 20 8 23 63

Test 6 5 3 6 20

covariates and consequently the variable selection task becomes more challenging. This

difficulty is reflected in the variable selection frequency reported in Table 6. Despite the

difficulty, the adaptive procedures are able to remove noise variables reasonably well.

6 Real Example

DNA microarray technology has made it possible to monitor mRNA expressions of

thousands of genes simultaneously. In this section, we apply our six different MSVMs

on the children cancer data set in Khan et al. (2001). Khan et al. (2001) classi-

fied the small round blue cell tumors (SRBCTs) of childhood into 4 classes; namely

neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL), and

the Ewing family of tumors (EWS) using cDNA gene expression profiles. After fil-

tering, 2308 gene profiles out of 6567 genes are given in the data set, available at

http://research.nhgri.nih.gov/microarray/Supplement/. The data set is consisted of a

training set of size 63 and a test set of size 20. The distribution of the four distinct

tumor categories in the training and test sets is given in Table 6. Note that Burkitt

lymphoma (BL) is a subset of NHL.

To analyze the data, we first standardize the data sets by applying a simple linear

transformation based on the training data. To be specific, we standardize the expression

x̃gi of the g-th gene of subject i to obtain xgi by the following formula:

xgi =
x̃gi − 1

n

∑n

j=1 x̃gj

sd(x̃g1, · · · , x̃gn)
.

Then we rank all genes using their marginal relevance in class separation by adopting
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Table 8: Classification results of the microarray data using 200 genes.

Selected genes

Penalty Testing Error Top 100 Bottom 100 LOOCV error

L2 0 100 100 0

L1 1/20 62 1 0

Adp-L1 0 53 1 0

Supnorm 1/20 53 0 0

Adp-supI 1/20 50 0 0

Adp-supII 1/20 47 0 0

a simple criterion used in Dudoit et al. (2002). Specifically, the relevance measure for

gene g is defined to be the ratio of between classes sum of squares to within class sum of

squares as follows:

R(g) =

∑n

i=1

∑k

j=1 I(yi = j)(x̄
(j)
·g − x̄·g)

2

∑n

i=1

∑k

j=1 I(yi = j)(xig − x̄
(j)
·g )2

, (6.1)

where n is the size of the training set, x̄
(j)
·g denotes the average expression level of gene

g for class j observations, and x̄·g is the overall mean expression level of gene g in the

training set. To examine the performance of variable selection of all different methods,

we select the top 100 and bottom 100 genes as covariates according the relevance measure

R.

All six MSVMs with different penalties are applied to the training set with leave-

one-out cross validation. The results are tabulated in Table 8. All methods have 0

leave-one-out cross validation errors and 0 or 1 misclassification on the testing set. In

terms of gene selection, three sup-norm MSVMs are able eliminate all bottom 100 genes

and they use around 50 genes out of the top 100 genes to achieve comparable classification

performance to other methods.
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Training data

               

Test data

EWS BL NB RMSEWS BL NB RMS                

Homo sapiens incomplete cDNA for a mutated allele of a myosin class I, myh−1c
Homo sapiens incomplete cDNA for a mutated allele of a myosin class I, myh−1c
transmembrane protein
apelin; peptide ligand for APJ receptor

recoverin
glycine cleavage system protein H (aminomethyl carrier)
Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 45620
thioredoxin reductase 1
cadherin 2, N−cadherin (neuronal)
microtubule−associated protein 1B
postmeiotic segregation increased 2−like 12
glucose−6−phosphate dehydrogenase
protein tyrosine phosphatase, non−receptor type 12
transcriptional intermediary factor 1
growth associated protein 43
ESTs
dihydropyrimidinase−like 2
kinesin family member 3C
fibroblast growth factor receptor 4
presenilin 2 (Alzheimer disease 4)
sarcoglycan, alpha (50kD dystrophin−associated glycoprotein)
nuclear receptor coactivator 1
ESTs
glycine amidinotransferase (L−arginine:glycine amidinotransferase)
mesoderm specific transcript (mouse) homolog
lymphocyte−specific protein 1
Human DNA for insulin−like growth factor II (IGF−2); exon 7 and additional ORF
neurofibromin 2 (bilateral acoustic neuroma)
plasminogen activator, tissue
interleukin 4 receptor
Wiskott−Aldrich syndrome (ecezema−thrombocytopenia)
proteasome (prosome, macropain) subunit, beta type, 8 (large multifunctional protease 7)
major histocompatibility complex, class II, DM alpha
pim−2 oncogene
ESTs
proteasome (prosome, macropain) subunit, beta type, 10
protein kinase, cAMP−dependent, regulatory, type II, beta
postmeiotic segregation increased 2−like 3
Rho−associated, coiled−coil containing protein kinase 1
EST
translocation protein 1
Fc fragment of IgG, receptor, transporter, alpha
follicular lymphoma variant translocation 1
antigen identified by monoclonal antibodies 12E7, F21 and O13
caveolin 1, caveolae protein, 22kD
ATPase, Na+/K+ transporting, alpha 1 polypeptide
cyclin D1 (PRAD1: parathyroid adenomatosis 1)
protein tyrosine phosphatase, non−receptor type 13 (APO−1/CD95 (Fas)−associated phosphatase)
v−myc avian myelocytomatosis viral oncogene homolog

Figure 3: Heat maps of the microarray data. The left and right panels represent the

training and testing sets respectively.

In Figure 3, we plot heat maps of both training and testing sets on the left and

right panels respectively. In these heat maps, rows represent 50 genes selected by the

Type I sup-norm MSVM and columns represent patients. The gene expression values are

reflected by colors on the plots, with red representing the highest expression level and

blue the lowest expression level. For visualization, we group columns within each class

together and use hierarchical clustering with correlation distance on the training set to

order the genes so that genes close to each other have similar expressions. From the left

panel on Figure 3, we can observe four block structures associated with four classes. This

implies that the 50 genes selected are highly informative in predicting the tumor types.

For the testing set shown on the right panel, even though the block structure is not as

clean as the training set partially due to the small testing size, we can still identify the

blocks for all classes. Therefore, the proposed sup-norm MSVMs are indeed effective in

performing simultaneous classification and variable selection.
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7 Discussion

In this paper, we propose a new regularization method using the sup-norm to MSVM

to achieve variable selection. Through the new penalty, the natural group effect among

different coefficients of the same variable is embedded in the regularization framework.

As a result, the sup-norm MSVMs can perform better variable selection and deliver more

parsimonious classifiers than the L1 MSVMs.

In some problems, it is possible to form groups among covariates. As argued in Yuan

and Lin (2006) and Zou and Yuan (2006), it is advisable to use such group information

in the model building process to improve accuracy of the prediction. If such kind of

information is available for multicategory classification, there will be two kinds of group

information available for model building, one type of group formed by the same covariate

corresponding to different classes as considered in the paper and the other kind formed

among covariates. A future research direction is to combine both group information

to construct a new multicategory classification method. We believe that such potential

classifiers can outperform those without using the additional information.

Appendix

Proof of Lemma 2.1: Without loss of generality, assume that {w1j , w2j, w3j} are all

nonzero. Because of the sum-to-zero constraint w1j + w2j + w3j = 0, there must be

one component out of {w1j, w2j, w3j} has a different sign from the other two. Suppose

the sign of w1j differs from the other two and then |w1j| = |w2j| + |w3j| by the sum-

to-zero constraint. Consequently, we have |w1j| = max{|w1j|, |w2j|, |w3j|}. Therefore,
∑3

k=1 |wkj| = 2‖w(j)‖∞. The equivalence of problem (2.3) with the tuning parameter λ

and problem (2.6) the tuning parameter 2λ can be then established. This completes the

proof.
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