Partition based priors to analyze data arising from failure models and censoring models

Jayaram Sethuraman
Department of Statistics
Florida State University
and
University of South Carolina

sethu@stat.fsu.edu

October 21, 2008
Summary

Failure and repair models
Summary

Failure and repair models

Censoring models
Summary

Failure and repair models

Censoring models

Partition based (PB) priors
Summary

Failure and repair models

Censoring models

Partition based (PB) priors introduced by Sethuraman and Hollander (2008) turn out to be the natural priors for analyzing both these kinds of data.
Failure and repair models - I

Here X_1, X_2, \ldots are dependent random variables whose distribution depends on a pm P and we want to estimate P.
Here X_1, X_2, \ldots are dependent random variables whose distribution depends on a pm P and we want to estimate P. For any set A, let P_A denote the restriction of P to A.
Failure and repair models - I

Here X_1, X_2, \ldots are dependent random variables whose distribution depends on a pm P and we want to estimate P. For any set A, let P_A denote the restriction of P to A.

The general repair model postulates that there some environmental random variables Y_1, Y_2, \ldots, and
Failure and repair models - I

Here X_1, X_2, \ldots are dependent random variables whose distribution depends on a pm P and we want to estimate P. For any set A, let P_A denote the restriction of P to A.

The general repair model postulates that there some environmental random variables Y_1, Y_2, \ldots, and

$$X_1|P \sim P$$
Failure and repair models - I

Here X_1, X_2, \ldots are dependent random variables whose distribution depends on a pm P and we want to estimate P. For any set A, let P_A denote the restriction of P to A.

The general repair model postulates that there are some environmental random variables Y_1, Y_2, \ldots, and

\begin{align*}
X_1 | P & \sim P \\
X_2 | (X_1, Y_1, P) & \sim P_{A_1}
\end{align*}
Failure and repair models - I

Here X_1, X_2, \ldots are dependent random variables whose distribution depends on a pm P and we want to estimate P. For any set A, let P_A denote the restriction of P to A.

The general repair model postulates that there some environmental random variables Y_1, Y_2, \ldots, and

\[
X_1 | P \sim P \\
X_2 | (X_1, Y_1, P) \sim P_{A_1} \\
X_3 | (X_1, X_2, Y_1, Y_2, P) \sim P_{A_2} \\
\vdots
\]
Here X_1, X_2, \ldots are dependent random variables whose distribution depends on a pm P and we want to estimate P. For any set A, let P_A denote the restriction of P to A.

The general repair model postulates that there some environmental random variables Y_1, Y_2, \ldots, and

$$X_1 | P \sim P$$
$$X_2 | (X_1, Y_1, P) \sim P_{A_1}$$
$$X_3 | (X_1, X_2, Y_1, Y_2, P) \sim P_{A_2}$$
$$\vdots$$

where A_n is a set that depends on $X_1, \ldots, X_n, Y_1, Y_2, \ldots, Y_n$ for $n = 1, 2, \ldots$.
Failure and repair models - III

For example if $A_{X_1} = (X_1, \infty)$, the distribution of X_2 is that obtained by minimal repair.
Failure and repair models - III

For example if $A_{X_1} = (X_1, \infty)$, the distribution of X_2 is that obtained by minimal repair and if $A_{X_1} = (0, \infty)$,
Failure and repair models - III

For example if $A_{X_1} = (X_1, \infty)$, the distribution of X_2 is that obtained by minimal repair and if $A_{X_1} = (0, \infty)$, distribution of X_2 is P (new component).
For example if $A_{X_1} = (X_1, \infty)$, the distribution of X_2 is that obtained by minimal repair and if $A_{X_1} = (0, \infty)$, distribution of X_2 is P (new component).

Fix a number p in $(0, 1)$. Let the environmental variable $Y_1 \sim \text{Uniform } [0, 1]$ and independent of X_1.
Failure and repair models - III

For example if $A_{X_1} = (X_1, \infty)$, the distribution of X_2 is that obtained by minimal repair and if $A_{X_1} = (0, \infty)$, distribution of X_2 is P (new component).

Fix a number p in $(0, 1)$. Let the environmental variable $Y_1 \sim \text{Uniform } [0, 1]$ and independent of X_1. Let

$$A_{X_1} = \begin{cases}
(0, \infty) & \text{if } Y \leq p \\
(X_1, \infty) & \text{if } Y > p.
\end{cases}$$
Failure and repair models - III

For example if $A_{X_1} = (X_1, \infty)$, the distribution of X_2 is that obtained by minimal repair and if $A_{X_1} = (0, \infty)$, distribution of X_2 is P (new component).

Fix a number p in $(0, 1)$. Let the environmental variable $Y_1 \sim \text{Uniform } [0, 1]$ and independent of X_1. Let

$$A_{X_1} = \begin{cases}
(0, \infty) & \text{if } Y \leq p \\
(X_1, \infty) & \text{if } Y > p.
\end{cases}$$

This is the Brown-Proshchan model of randomized minimal repair.
Failure and repair models - III

For example if $A_{X_1} = (X_1, \infty)$, the distribution of X_2 is that obtained by minimal repair and if $A_{X_1} = (0, \infty)$, distribution of X_2 is P (new component).

Fix a number p in $(0, 1)$. Let the environmental variable $Y_1 \sim \text{Uniform } [0, 1]$ and independent of X_1. Let

$$A_{X_1} = \begin{cases}
(0, \infty) & \text{if } Y \leq p \\
(X_1, \infty) & \text{if } Y > p.
\end{cases}$$

This is the Brown-Proshchan model of randomized minimal repair.

Many other repair models fall under this general repair model.
Failure and repair models - III

For example if $A_X = (X_1, \infty)$, the distribution of X_2 is that obtained by minimal repair and if $A_X = (0, \infty)$, distribution of X_2 is P (new component).

Fix a number p in $(0, 1)$. Let the environmental variable $Y_1 \sim \text{Uniform } [0, 1]$ and independent of X_1. Let

$$A_X = \begin{cases} (0, \infty) & \text{if } Y \leq p \\ (X_1, \infty) & \text{if } Y > p. \end{cases}$$

This is the Brown-Proshan model of randomized minimal repair.

Many other repair models fall under this general repair model.

Repair models can also be viewed as search models.
A Bayesian will put a prior distribution for P.

Failure and repair models - IV
A Bayesian will put a prior distribution for P.

He will also assume that the distribution of Y_n given $X_1, \ldots, X_n, Y_1, \ldots, Y_{n-1}$ is independent of P, $n = 1, 2, \ldots$
A Bayesian will put a prior distribution for P.

He will also assume that the distribution of Y_n given $X_1,\ldots,X_n, Y_1,\ldots,Y_{n-1}$ is independent of P, $n = 1, 2, \ldots$

This leads to a nice simplification;
A Bayesian will put a prior distribution for P.

He will also assume that the distribution of Y_n given $X_1, \ldots, X_n, Y_1, \ldots, Y_{n-1}$ is independent of P, $n = 1, 2, \ldots$

This leads to a nice simplification; we can assume that Y_1, Y_2, \ldots are constants.
Censoring Models - 1

Here \(X_1, X_2, \ldots \) are dependent random variables (actual censored and uncensored observations) whose distribution depends on a pm \(P \) and we want to estimate \(P \).
Censoring Models - 1

Here \(X_1, X_2, \ldots \) are dependent random variables (actual censored and uncensored observations) whose distribution depends on a pm \(P \) and we want to estimate \(P \).

The general censoring model postulates that there are potential observations \(X_1^*, X_2^*, \ldots \), which are i.i.d. \(P \), and there are censoring (environmental) variables \(Y_1, Y_2, \ldots \). However, only \(Z_1 = \min(X_1^*, Y_1), Z_2 = \min(X_2^*, Y_2), \ldots \) are observed.
Censoring Models - 1

Here X_1, X_2, \ldots are dependent random variables (actual censored and uncensored observations) whose distribution depends on a pm P and we want to estimate P.

The general censoring model postulates that there are potential observations X_1^*, X_2^*, \ldots, which are i.i.d. P, and there are censoring (environmental) variables Y_1, Y_2, \ldots. However, only $Z_1 = \min(X_1^*, Y_1), Z_2 = \min(X_2^*, Y_2), \ldots$ are observed. Also observed are

$$X_1 \mid (Y_1, P) \sim \begin{cases} X_1^* & \text{if } X_1^* \in A_1^c \\ A_1 & \text{if } X_1^* \in A_1 \end{cases}$$

$$X_2 \mid (X_1, Y_1, Y_2, P) \sim \begin{cases} X_2^* & \text{if } X_2^* \in A_2^c \\ A_2 & \text{if } X_2^* \in A_2 \end{cases}$$

$$\vdots$$

where $A_1 = (Z_1, \infty), A_2 = (Z_2, \infty), \ldots$.
Censoring Models - II

For left censoring, we define $Z_i = \max(X_i^*, Y_i)$ and take $A_i = [0, Z_i)$ in the model above.
Censoring Models - II

For left censoring, we define $Z_i = \max(X_i^*, Y_i)$ and take $A_i = [0, Z_i)$ in the model above.

Similarly by taking A_n to be a set depending on $X_1, \ldots, X_{n-1}, Y_1, Y_2, \ldots, Y_n$ for $n = 1, 2, \ldots$, in the model above, we can simultaneously allow for all kinds of censoring and also allow for dependence on previous X^* observations. This general censoring model can also be used in search models.
Censoring Models - II

For left censoring, we define \(Z_i = \max(X_i^*, Y_i) \) and take \(A_i = [0, Z_i) \) in the model above.

Similarly by taking \(A_n \) to be a set depending on \(X_1, \ldots, X_{n-1}, Y_1, Y_2, \ldots, Y_n \) for \(n = 1, 2, \ldots \), in the model above, we can simultaneously allow for all kinds of censoring and also allow for dependence on previous \(X^* \) observations. This general censoring model can also be used in search models.

As before, a Bayesian will put a prior distribution for \(P \).
Censoring Models - II

For left censoring, we define $Z_i = \max(X_i^*, Y_i)$ and take $A_i = [0, Z_i)$ in the model above.

Similarly by taking A_n to be a set depending on $X_1, \ldots, X_{n-1}, Y_1, Y_2, \ldots, Y_n$ for $n = 1, 2, \ldots$, in the model above, we can simultaneously allow for all kinds of censoring and also allow for dependence on previous X^* observations. This general censoring model can also be used in search models.

As before, a Bayesian will put a prior distribution for P.

He will also assume that the distribution of Y_n given $X_1, \ldots, X_n, Y_1, \ldots, Y_{n-1}$ is independent of P, $n = 1, 2, \ldots$
Censoring Models - II

For left censoring, we define $Z_i = \max(X_i^*, Y_i)$ and take $A_i = [0, Z_i)$ in the model above.

Similarly by taking A_n to be a set depending on $X_1, \ldots, X_{n-1}, Y_1, Y_2, \ldots, Y_n$ for $n = 1, 2, \ldots$, in the model above, we can simultaneously allow for all kinds of censoring and also allow for dependence on previous X^* observations. This general censoring model can also be used in search models.

As before, a Bayesian will put a prior distribution for P.

He will also assume that the distribution of Y_n given $X_1, \ldots, X_n, Y_1, \ldots, Y_{n-1}$ is independent of P, $n = 1, 2, \ldots$

This leads to the nice simplification;
Censoring Models - II

For left censoring, we define \(Z_i = \max(X_i^*, Y_i) \) and take
\(A_i = [0, Z_i) \) in the model above.

Similarly by taking \(A_n \) to be a set depending on
\(X_1, \ldots, X_{n-1}, Y_1, Y_2, \ldots, Y_n \) for \(n = 1, 2, \ldots \), in the model above,
we can simultaneously allow for all kinds of censoring and also
allow for dependence on previous \(X^* \) observations. This general censoring model can also be used in search models.

As before, a Bayesian will put a prior distribution for \(P \).

He will also assume that the distribution of \(Y_n \) given
\(X_1, \ldots, X_n, Y_1, \ldots, Y_{n-1} \) is independent of \(P, \ n = 1, 2, \ldots \)

This leads to the nice simplification; we can assume that
\(Y_1, Y_2, \ldots \) are constants.
Partition Based Prior Distributions

The models described earlier for dependent data X_1, X_2, \ldots lead us, in a natural fashion, to Partition based (PB) Priors. These were introduced in Sethuraman and Hollander (2008).
Partition Based Prior Distributions

The models described earlier for dependent data X_1, X_2, \ldots lead us, in a natural fashion, to Partition based (PB) Priors. These were introduced in Sethuraman and Hollander (2008).

Let $\mathcal{B} = (B_1, \ldots, B_m)$ be a finite partition of \mathcal{X}. Let $P(\mathcal{B}) = (P(B_1), \ldots, P(B_m))$ be the partition probability vector, and let $(P_{B_1}, \ldots, P_{B_m})$ be the vector of restricted pm’s.
Partition Based Prior Distributions

The models described earlier for dependent data X_1, X_2, \ldots lead us, in a natural fashion, to Partition based (PB) Priors. These were introduced in Sethuraman and Hollander (2008).

Let $\mathcal{B} = (B_1, \ldots, B_m)$ be a finite partition of \mathcal{X}. Let $P(\mathcal{B}) = (P(B_1), \ldots, P(B_m))$ be the partition probability vector, and let $(P_{B_1}, \ldots, P_{B_m})$ be the vector of restricted pm’s.

There is a one-to-one correspondence between pm’s P and the pair $(P(\mathcal{B}), (P_{B_1}, \ldots, P_{B_m}))$ since

$$P(B) = \sum_{i=1}^{m} P(B_i) P_{A_i}(B).$$

The pair $(P(\mathcal{B}), (P_{B_1}, \ldots, P_{B_m}))$ is just another way to understand a pm P.
Partition based Priors

Suppose that $P(B), P_{B_1}, \ldots, P_{B_m}$ are independent, with $P(B)$ having a pdf proportional to $h(y)$, and P_{B_i} having a distribution $G_i, i = 1, \ldots, m$.
Partition based Priors

Suppose that $P(\mathcal{B}), P_{B_1}, \ldots, P_{B_m}$ are independent, with $P(\mathcal{B})$ having a pdf proportional to $h(y)$, and P_{B_i} having a distribution G_i, $i = 1, \ldots, m$.

Then we say that P has a Partition based (PB) prior distribution

$$H(\mathcal{B}, h, \mathcal{G})$$

where $\mathcal{G} = G_1 \times \cdots \times G_m$.
Partition based Priors

Suppose that $P(B), P_{B_1}, \ldots, P_{B_m}$ are independent, with $P(B)$ having a pdf proportional to $h(y)$, and P_{B_i} having a distribution $G_i, i = 1, \ldots, m$.

Then we say that P has a Partition based (PB) prior distribution

$$H(B, h, G)$$

where $G = G_1 \times \cdots \times G_m$.

The G_i’s are probability measures on the space of probability measures and there are m of them.
Partition based Priors

Suppose that $P(\mathcal{B}), P_{B_1}, \ldots, P_{B_m}$ are independent, with $P(\mathcal{B})$ having a pdf proportional to $h(y)$, and P_{B_i} having a distribution $G_i, i = 1, \ldots, m$.

Then we say that P has a Partition based (PB) prior distribution

$$H(\mathcal{B}, h, \mathcal{G})$$

where $\mathcal{G} = G_1 \times \cdots \times G_m$.

The G_i’s are probability measures on the space of probability measures and there are m of them. Hopefully, we will use standard nonparametric priors for $G_i, i = 1, \ldots, m$,
Partition based Priors

Suppose that $P(\mathcal{B})$, P_{B_1}, \ldots, P_{B_m} are independent, with $P(\mathcal{B})$ having a pdf proportional to $h(y)$, and P_{B_i} having a distribution G_i, $i = 1, \ldots, m$.

Then we say that P has a Partition based (PB) prior distribution

$$H(\mathcal{B}, h, \mathcal{G})$$

where $\mathcal{G} = G_1 \times \cdots \times G_m$.

The G_i’s are probability measures on the space of probability measures and there are m of them. Hopefully, we will use standard nonparametric priors for G_i, $i = 1, \ldots, m$, so that we also know the corresponding posterior distributions G_i^X.

Let α be a finite non-zero measure on \mathcal{X} and take G_i to be $D_{\alpha|A_i}$, $i = 1, \ldots, m$.
Let α be a finite non-zero measure on \mathcal{X} and take G_i to be $D_{\alpha A_i}$, $i = 1, \ldots, m$. In this case, we will call the PB prior $H(B, h, G)$ a Partition Based (PB) Dirichlet prior and denote it by $D(B, h, \alpha)$.

PB Dirichlet Priors
Let α be a finite non-zero measure on \mathcal{X} and take G_i to be $D_{\alpha A_i}$, $i = 1, \ldots, m$. In this case, we will call the PB prior $H(B, h, G)$ as a Partition Based (PB) Dirichlet prior and denote it by $D(B, h, \alpha)$.

If B^* is a subpartition of B, then a PB Dirichlet prior on B is also a PB Dirichlet prior on B^*.
PB Dirichlet Priors

Let α be a finite non-zero measure on \mathcal{X} and take G_i to be $D_{\alpha A_i}$, $i = 1, \ldots, m$. In this case, we will call the PB prior $H(B, h, G)$ as a Partition Based (PB) Dirichlet prior and denote it by $D(B, h, \alpha)$.

If B^* is a subpartition of B, then a PB Dirichlet prior on B is also a PB Dirichlet prior on B^*.

A PB Dirichlet prior $D(B, h, \alpha)$ is the Dirichlet prior D_{α} if and only if

$$h(y) \propto y_1^{\alpha(A_1) - 1} \cdots y_m^{\alpha(A_m) - 1}.$$
Posterior distributions in standard nonparametric Bayesian problem

For any nonparametric prior G, let G^X be the posterior distribution in the standard nonparametric Bayesian problem.
For any nonparametric prior G, let G^X be the posterior distribution in the standard nonparametric Bayesian problem.

That is the unknown pm P has prior distribution G, and the data X given P has distribution P. G^X is simply the notation for the posterior distribution of P given X.
Consider the problem where P has the PB prior $H(B, h, G)$ and the data X given P has distribution P_A. Suppose that $A = \bigcup_{i=1}^{r} B_i$, and define $y_A = \sum_{i=1}^{r} y_i$. Let R be the random index such that $X \in B_R$; note that $R \in \{1, \ldots, r\}$.
Consider the problem where P has the PB prior

$$H(\mathcal{B}, h, \mathcal{G})$$

and the data X given P has distribution P_A.
Consider the problem where P has the PB prior

$$H(B, h, G)$$

and the data X given P has distribution P_A.

Suppose that $A = \bigcup_{i=1}^r B_i$, and define $y_A = \sum_{i=1}^r y_i$.
Consider the problem where \(P \) has the PB prior

\[
H(B, h, G)
\]

and the data \(X \) given \(P \) has distribution \(P_A \).

Suppose that \(A = \bigcup_{i=1}^r B_i \), and define \(y_A = \sum_{i=1}^r y_i \).

Let \(R \) be the random index such that \(X \in B_R \); note that \(R \in \{1, \ldots, r\} \).
Theorem

Then the posterior distribution of P given X is

$$H(\beta, h^X, G^X)$$

where

$$h^X(y) \propto h(y) \cdot \frac{y_R}{y_A}$$

and

$$G^X = G_1 \times \cdots G_{R-1} \times G_R^X \times G_{R+1} \times \cdots G_m.$$
Suppose that P has the PB Dirichlet distribution $\mathcal{D}(\mathcal{B}, h, \alpha)$.

Given P, let the data X have distribution P_A where, as before, $A = \bigcup_{i=1}^{r} B_i$.

The condition $A = \bigcup_{i=1}^{r} B_i$ is not required when the prior is a PB Dirichlet prior; the finite partition \mathcal{B} can be enlarged to a new partition \mathcal{B}^* by including A; the posterior distribution will still be a PB Dirichlet distribution on the partition on \mathcal{B}^*.

Even more; The partition \mathcal{B} can be enlarged with the random restriction sets based on all the data, and still a blind application of the method above will give the correct answer. See Sethuraman and Hollander (2008).
Suppose that P has the PB Dirichlet distribution $\mathcal{D}(B, h, \alpha)$. Given P, let the data X have distribution P_A where, as before, $A = \bigcup_{i=1}^{r} B_i$. Then the posterior distribution of P given X is

$$\mathcal{D}(B, h^X, \alpha + \delta_X).$$
Suppose that P has the PB Dirichlet distribution $\mathcal{D}(\mathcal{B}, h, \alpha)$. Given P, let the data X have distribution P_A where, as before, $A = \bigcup_{i=1}^{r} B_i$. Then the posterior distribution of P given X is

$$\mathcal{D}(\mathcal{B}, h^X, \alpha + \delta_X).$$

The condition $A = \bigcup_{i=1}^{r} B_i$ is not required when the prior is a PB Dirichlet prior; the finite partition \mathcal{B} can be enlarged to a new partition \mathcal{B}^* by including A;
Posterior distributions of PB priors with repair data - 3

Suppose that P has the PB Dirichlet distribution $\mathcal{D}(\mathcal{B}, h, \alpha)$.
Given P, let the data X have distribution P_A where, as before, $A = \bigcup_{i=1}^{r} B_i$.
Then the posterior distribution of P given X is

$$\mathcal{D}(\mathcal{B}, h^X, \alpha + \delta_X).$$

The condition $A = \bigcup_{i=1}^{r} B_i$ is not required when the prior is a PB Dirichlet prior; the finite partition \mathcal{B} can be enlarged to a new partition \mathcal{B}^* by including A; the posterior distribution will still be a PB Dirichlet distribution on the partition on \mathcal{B}^*.

Even more; The partition \mathcal{B} can be enlarged with the random restriction sets based on all of data, and still a blind application of the method above will give the correct answer. See Sethuraman and Hollander (2008).
Suppose that P has the PB Dirichlet distribution $\mathcal{D}(\mathcal{B}, h, \alpha)$. Given P, let the data X have distribution P_A where, as before, $A = \bigcup_{i=1}^{r} B_i$. Then the posterior distribution of P given X is

$$\mathcal{D}(\mathcal{B}, h^X, \alpha + \delta_X).$$

The condition $A = \bigcup_{i=1}^{r} B_i$ is not required when the prior is a PB Dirichlet prior; the finite partition \mathcal{B} can be enlarged to a new partition \mathcal{B}^* by including A; the posterior distribution will still be a PB Dirichlet distribution on the partition on \mathcal{B}^*.

Even more; The partition \mathcal{B} can be enlarged with the random restriction sets based on all of data, and still a blind application of the method above will give the correct answer. See Sethuraman and Hollander (2008).
As an illustration, we will write a Dirichlet prior as a partition based prior on a partition determined by the data and compute the posterior; we will see that we still obtain the correct answer.
Illustration a Dirichlet Prior as a PB prior

As an illustration, we will write a Dirichlet prior as a partition based prior on a partition determined by the data and compute the posterior; we will see that we still obtain the correct answer.

Suppose that $P \sim D_\alpha, X|P \sim P$.
Illustration a Dirichlet Prior as a PB prior

As an illustration, we will write a Dirichlet prior as a partition based prior on a partition determined by the data and compute the posterior; we will see that we still obtain the correct answer.

Suppose that $P \sim D_\alpha$, $X|P \sim P$. Let $A = (X - \epsilon, X + \epsilon)$ and let $\alpha(A) > 0$.
Illustration a Dirichlet Prior as a PB prior

As an illustration, we will write a Dirichlet prior as a partition based prior on a partition determined by the data and compute the posterior; we will see that we still obtain the correct answer.

Suppose that $P \sim D_\alpha, X \mid P \sim P$. Let $A = (X - \epsilon, X + \epsilon)$ and let $\alpha(A) > 0$. Let $B = \{A, A^c\}$.
Illustration a Dirichlet Prior as a PB prior

As an illustration, we will write a Dirichlet prior as a partition based prior on a partition determined by the data and compute the posterior; we will see that we still obtain the correct answer.

Suppose that $P \sim D_\alpha, X|P \sim P$. Let $A = (X - \epsilon, X + \epsilon)$ and let $\alpha(A) > 0$. Let $B = \{A, A^c\}$.

Then rewrite $D_\alpha = H(B, h, D_\alpha)$ with $h \propto y_1^{\alpha(A) - 1} y_1^{\alpha(A^c) - 1}$ and
Illustration a Dirichlet Prior as a PB prior

As an illustration, we will write a Dirichlet prior as a partition based prior on a partition determined by the data and compute the posterior; we will see that we still obtain the correct answer.

Suppose that $P \sim D_{\alpha}, X|P \sim P$. Let $A = (X - \epsilon, X + \epsilon)$ and let $\alpha(A) > 0$. Let $\mathcal{B} = \{A, A^c\}$.

Then rewrite $D_{\alpha} = H(\mathcal{B}, h, D_{\alpha})$ with $h \propto y_1^{\alpha(A) - 1} y_1^{\alpha(A^c) - 1}$ and a blind application of the main theorem will show that the posterior is $H(\mathcal{B}, h^X, D_{\alpha+\delta_X})$, with $h^X \propto y_1^{\alpha(A)} y_1^{\alpha(A^c) - 1}$, which luckily reduces to the correct answer, namely $D_{\alpha+\delta_X}$.
Bayes and Frequentist Estimates of the Survival Function

Bayes and W–S Estimates from AC Data Set (small) of Whittaker –Samaniego

Failure Age (Hours)
Survival Probability

Bayes Estimate
WS Estimate
PB Priors and Censored Data - 1

1. Suppose that, given P, the potential data X_1, X_2, \ldots are i.i.d. P.
1. Suppose that, given P, the potential data X_1, X_2, \ldots are i.i.d. P.

2. The potential data may be censored,
1. Suppose that, given P, the potential data X_1, X_2, \ldots are i.i.d. P.

2. The potential data may be censored, i.e. there are sets A_1, A_3, \ldots and we know the value of X_i if $X_i \in A_i^c$.
1. Suppose that, given P, the potential data X_1, X_2, \ldots are i.i.d. P.

2. The potential data may be censored, i.e. there are sets A_1, A_3, \ldots and we know the value of X_i if $X_i \in A_i^c$, otherwise we say the X_i is censored and we only know that $X_i \in A_i$.
1. Suppose that, given P, the potential data X_1, X_2, \ldots are i.i.d. P.

2. The potential data may be censored, i.e. there are sets A_1, A_3, \ldots and we know the value of X_i if $X_i \in A_i^c$, otherwise we say the X_i is censored and we only know that $X_i \in A_i$.

3. Here the set A_n can depend on $(X_1, Y_1, \ldots, X_{n-1}, Y_{n-1}, Y_n)$, where Y_1, Y_2, \ldots are the censoring variables.
1. Suppose that, given P, the potential data X_1, X_2, \ldots are i.i.d. P.

2. The potential data may be censored, i.e. there are sets A_1, A_3, \ldots and we know the value of X_i if $X_i \in A_i^c$, otherwise we say the X_i is censored and we only know that $X_i \in A_i$.

3. Here the set A_n can depend on $(X_1, Y_1, \ldots, X_{n-1}, Y_{n-1}, Y_n)$, where Y_1, Y_2, \ldots are the censoring variables.

4. The distribution of Y_n given $X_1, \ldots, X_n, Y_1, \ldots, Y_{n-1}$ is independent of P, $n = 1, 2, \ldots$ (usual assumption in Bayesian methods giving nice simplifications;
1. Suppose that, given P, the potential data X_1, X_2, \ldots are i.i.d. P.

2. The potential data may be censored, i.e. there are sets A_1, A_3, \ldots and we know the value of X_i if $X_i \in A_i^c$, otherwise we say the X_i is censored and we only know that $X_i \in A_i$.

3. Here the set A_n can depend on $(X_1, Y_1, \ldots, X_{n-1}, Y_{n-1}, Y_n)$, where Y_1, Y_2, \ldots are the censoring variables.

4. The distribution of Y_n given $X_1, \ldots, X_n, Y_1, \ldots, Y_{n-1}$ is independent of P, $n = 1, 2, \ldots$ (usual assumption in Bayesian methods giving nice simplifications; can assume that Y_1, Y_2, \ldots are constants.)
Let P have prior $H(B, h, G)$ and suppose that the censoring set A satisfies $A = \bigcup_{i=1}^{r} B_i$; define $y_A = \bigcup_{i=1}^{r} y_i$.
Let P have prior $H(B, h, G)$ and suppose that the censoring set A satisfies $A = \bigcup_{i=1}^{r} B_i$; define $y_A = \bigcup_{i=1}^{r} y_i$.

Let us consider just only one potential observation X and also assume that it is censored by A. (The uncensored case is the standard nonparametric Bayesian problem.)
Theorem

Then the posterior distribution of P given that the potential data X is censored,
Theorem

Then the posterior distribution of P given that the potential data X is censored, is

$$H(\mathcal{B}, h(y) \cdot y_A, \mathcal{G}).$$
Theorem

Then the posterior distribution of P given that the potential data X is censored, is

$$H(\mathcal{B}, h(y) \cdot y_A, \mathcal{G}).$$

(Do not need independence among P_{B_1}, \ldots, P_{B_m}).
Theorem

Then the posterior distribution of P given that the potential data X is censored, is

$$H(\mathcal{B}, h(y) \cdot y_A, \mathcal{G}).$$

(Do not need independence among P_{B_1}, \ldots, P_{B_m}).

Theorem

If there are censoring sets A_1, \ldots, A_n, each of which is a sum of sets in the partition \mathcal{B},
Theorem

Then the posterior distribution of P given that the potential data X is censored, is

$$H(\mathcal{B}, h(y) \cdot y_A, \mathcal{G}).$$

(Do not need independence among P_{B_1}, \ldots, P_{B_m}).

Theorem

If there are censoring sets A_1, \ldots, A_n, each of which is a sum of sets in the partition \mathcal{B}, then the posterior distribution of P given that all the data X_1, \ldots, X_n are censored
Theorem

Then the posterior distribution of P given that the potential data X is censored, is

$$H(\mathcal{B}, h(y) \cdot y_A, \mathcal{G}).$$

(Do not need independence among P_{B_1}, \ldots, P_{B_m}).

Theorem

If there are censoring sets A_1, \ldots, A_n, each of which is a sum of sets in the partition \mathcal{B}, then the posterior distribution of P given that all the data X_1, \ldots, X_n are censored is

$$H(\mathcal{B}, h(y) \cdot y_{A_1} \cdots y_{A_n}, \mathcal{G}).$$
PB Dirichlet Priors and Censored Data

Simpler results can be stated for PB Dirichlet priors and Dirichlet priors.
PB Dirichlet Priors and Censored Data

Simpler results can be stated for PB Dirichlet priors and Dirichlet priors. We do not need the condition that the censoring sets are sums of sets in the partition B.

In particular, suppose that P has a Dirichlet prior D_α. Let A_1, \ldots, A_n be the censoring sets for the potential data X_1, \ldots, X_n, which are i.i.d. P. Let $B = (B_1, \ldots, B_m)$ be the partition based on A_1, \ldots, A_n. Let $Y_{A_i} = \sum_{j: B_j \subset A_i} y_j$, $i = 1, \ldots, n$.

PB Dirichlet Priors and Censored Data

Simpler results can be stated for PB Dirichlet priors and Dirichlet priors. We do not need the condition that the censoring sets are sums of sets in the partition B.

In particular, suppose that P has a Dirichlet prior D_α. Let A_1, \ldots, A_n be the censoring sets for the potential data X_1, \ldots, X_n, which are i.i.d. P. Let $B = (B_1, \ldots, B_m)$ be the partition based on A_1, \ldots, A_n. Let $Y_{A_i} = \sum_{j: B_j \subset A_i} y_j$, $i = 1, \ldots, n$.

Theorem

Then the posterior distribution of P given that all the data X_1, \ldots, X_n are censored is

$$D(B, h(y) \cdot y_{A_1} \cdots y_{A_n}, \alpha)$$

where $h(y) \propto y_1^{\alpha(B_1) - 1} \cdots y_m^{\alpha(B_m) - 1}$.
PB Dirichlet Priors and Censored Data

Simpler results can be stated for PB Dirichlet priors and Dirichlet priors. We do not need the condition that the censoring sets are sums of sets in the partition B.

In particular, suppose that P has a Dirichlet prior D_α. Let A_1, \ldots, A_n be the censoring sets for the potential data X_1, \ldots, X_n, which are i.i.d. P. Let $B = (B_1, \ldots, B_m)$ be the partition based on A_1, \ldots, A_n. Let $Y_{A_i} = \sum_{j:B_j \subset A_i} y_j$, $i = 1, \ldots, n$.

Theorem

Then the posterior distribution of P given that all the data X_1, \ldots, X_n are censored is

$$D(B, h(y) \cdot y_{A_1} \cdots y_{A_n}, \alpha)$$

where $h(y) \propto y_1^{\alpha(B_1)-1} \cdots y_m^{\alpha(B_m)-1}$, and this is a PB Dirichlet distribution.
The moral of this talk is that if you start even from a Dirichlet prior, and the data consists of general repair or general censored data, then the posterior will be a PB Dirichlet distribution.
Susarla-Van Ryzin Example -1

Susarla and Van Ruzin (1976) considered right censoring
Susarla and Van Ruzin (1976) considered right censoring (i.e. the censoring set $A_i = [a_i, \infty)$ among random variables on $[0, \infty)$). They also used a Dirichlet prior for P and obtained the expectation of the df $F(x)$ under the posterior distribution.
Susarla and Van Ruzin (1976) considered right censoring (i.e. the censoring set $A_i = [a_i, \infty)$ among random variables on $[0, \infty)$).

They also used a Dirichlet prior for P and obtained the expectation of the df $F(x)$ under the posterior distribution.

Their example has been revisited by many authors.
Susarla and Van Ruzin (1976) considered right censoring (i.e. the censoring set $A_i = [a_i, \infty)$ among random variables on $[0, \infty)$).

They also used a Dirichlet prior for P and obtained the expectation of the df $F(x)$ under the posterior distribution.

Their example has been revisited by many authors.
We will show how their example works with the use of PB priors.
Susarla-Van Ryzin Example -2

Their data set is

0.8, 1.0+, 2.7+, 3.1, 5.4, 7.0+, 9.2, 12.1+,

where $a+$ denotes that the censoring set was $[a, \infty)$ and that potential observation was censored.
Susarla-Van Ryzin Example -2

Their data set is

\[0.8, 1.0+, 2.7+, 3.1, 5.4, 7.0+, 9.2, 12.1+,\]

where \(a+\) denotes that the censoring set was \([a, \infty)\) and that potential observation was censored.

They used a Dirichlet prior for \(P\) with parameter \(\alpha\), which was 8 times the exponential distribution with failure rate 0.12.
Their data set is

$$0.8, 1.0+, 2.7+, 3.1, 5.4, 7.0+, 9.2, 12.1+,$$

where $a+$ denotes that the censoring set was $[a, \infty)$ and that potential observation was censored.

They used a Dirichlet prior for P with parameter α, which was 8 times the exponential distribution with failure rate 0.12.

The posterior distribution given the uncensored observations is Dirichlet with parameter $\alpha^* = \alpha + \delta_{0.8} + \delta_{3.1} + \delta_{5.4} + \delta_{9.2}$. We can take this to be the prior distribution and say that the remaining data $1.0+, 2.7+, 7.0+, 12.1+$,
Susarla-Van Ryzin Example -2

Their data set is

0.8, 1.0+, 2.7+, 3.1, 5.4, 7.0+, 9.2, 12.1+,

where $a+$ denotes that the censoring set was $[a, \infty)$ and that potential observation was censored.

They used a Dirichlet prior for P with parameter α, which was 8 times the exponential distribution with failure rate 0.12.

The posterior distribution given the uncensored observations is Dirichlet with parameter $\alpha^* = \alpha + \delta_{0.8} + \delta_{3.1} + \delta_{5.4} + \delta_{9.2}$. We can take this to be the prior distribution and say that the remaining data 1.0+, 2.7+, 7.0+, 12.1+, are all censored.
The partition formed by the censoring sets is

\[\mathcal{B} = (B_1, \ldots, B_5) = ([0, a_1), [a_2, a_3), \ldots, [a_4, \infty)) \]

\[= ([0, 1.0), [1.0, 2.7), [2, 7, 7.0), [7.0, 12.1), [12.1, \infty)). \]
Susarla-Van Ryzin Example - 3

The partition formed by the censoring sets is

\[\mathcal{B} = (B_1, \ldots, B_5) = ([0, a_1), [a_2, a_3), \ldots, [a_4, \infty)) \]

\[= ([0, 1.0), [1.0, 2.7), [2, 7, 7.0), [7, 0, 12.1), [12.1, \infty)). \]

The posterior distribution given all the data is therefore

\[\mathcal{D}(\mathcal{B}, h(y) Y_2 Y_3 Y_4 Y_5, \alpha^*) \]

where

\[Y_j = y_j + \cdots + y_5, j = 2, \ldots, 5 \]

are the tail sums of the \(y \)'s and

\[h(y) \propto \prod_{1}^{5} y_j^{\alpha^*(B_j)-1}. \]
The expectation of $P(B_j)$ under this posterior is the expectation of y_j under the finite dimensional distribution with pdf proportional to $h(y) Y_2 Y_3 Y_4 Y_5$.

The transformation $y_j = z_j \prod_{r=1}^{j-1} (1 - z_r), j = 1, \ldots, 4$ makes z_1, \ldots, z_4 into independent Beta variables. This makes the calculation of the expected value of $P(B_j)$ very easy.
The expectation of $P(B_j)$ under this posterior is the expectation of y_j under the finite dimensional distribution with pdf proportional to $h(y)Y_2 Y_3 Y_4 Y_5$.

The transformation $y_j = z_j \prod_{1}^{j-1}(1 - z_r), j = 1, \ldots, 4$ makes z_1, \ldots, z_4 into independent Beta variables. This makes the calculation of the expected value of $P(B_j)$ very easy.

The expected value of $P([a, \infty))$ can be computed just as easily for any $a \in B_i$ since

$$E(P([a, \infty))) = E(y_i)E(P_{B_i}([a, a_i])) + E(Y_{i+1})$$

(Explain independence)
Susarla-Van Ryzin Example - 4

The expectation of \(P(B_j) \) under this posterior is the expectation of \(y_j \) under the finite dimensional distribution with pdf proportional to \(h(y) Y_2 Y_3 Y_4 Y_5 \).
The transformation \(y_j = z_j \prod_{1}^{j-1} (1 - z_r), j = 1, \ldots, 4 \) makes \(z_1, \ldots, z_4 \) into independent Beta variables. This makes the calculation of the expected value of \(P(B_j) \) very easy.

The expected value of \(P([a, \infty)) \) can be computed just as easily for any \(a \in B_i \) since

\[
E(P([a, \infty))) = E(y_i)E(P_{B_i}([a, a_i])) + E(Y_{i+1})
\]

(Explain independence) and

\[
E(P_{B_i}([a, a_i])) = \alpha^*([a, a_i]) / \alpha^*([a_{i-1}, a_i]).
\]
Suppose that we write the data from the example of Susarla-Van Ryzin as

\[0.8-,\ 1.0+,\ 2.7+,\ 3.1-,\ 5.4-,\ 7.0+,\ 9.2-,\ 12.1+. \]
Susarla-Van Ryzin Example, Extended -1

Two way censoring

Suppose that we write the data from the example of Susarla-Van Ryzin as

0.8−, 1.0+, 2.7+, 3.1−, 5.4−, 7.0+, 9.2−, 12.1+.

where $a−$ indicates that a potential data was censored to the interval $[0, a)$ (i.e. right censored).
Suppose that we write the data from the example of Susarla-Van Ryzin as

\[0.8-, 1.0+, 2.7+, 3.1-, 5.4-, 7.0+, 9.2-, 12.1+\]

where \(a-\) indicates that a potential data was censored to the interval \([0, a)\) (i.e. right censored).

The data generates a partition \(B = (B_1, \ldots, B_9)\) of 9 intervals.
If we use a Dirichlet prior \mathcal{D}_α, it can also be viewed as PB Dirichlet on this partition. The prior distribution of $P(B) = (P(B_1), \ldots, P(B_9))$ is the finite dimensional Dirichlet with pdf proportional to

$$h(y) = \times_{i=1}^{9} y_i^{\alpha(B_i) - 1}.$$
If we use a Dirichlet prior \mathcal{D}_α, it can also be viewed as PB Dirichlet on this partition. The prior distribution of $P(B) = (P(B_1), \ldots, P(B_9))$ is the finite dimensional Dirichlet with pdf proportional to

$$h(y) = \prod_{i=1}^{9} y_i^{\alpha(B_i) - 1}.$$

The posterior distribution of P is a PB Dirichlet distribution

$$\mathcal{D}(B^*, h(y)Z_1Y_3Y_4Z_5Z_5Y_7Z_8Y_9, \alpha)$$

where

$$Z_j = \sum_{1}^{j} y_i, \ Y_j = \sum_{j}^{9} y_i.$$
If we use a Dirichlet prior \mathcal{D}_α, it can also be viewed as PB Dirichlet on this partition. The prior distribution of $P(B) = (P(B_1), \ldots, P(B_9))$ is the finite dimensional Dirichlet with pdf proportional to

$$h(y) = \prod_{i=1}^9 y_i^{\alpha(B_i)-1}.$$

The posterior distribution of P is a PB Dirichlet distribution

$$\mathcal{D}(B^*, h(y)Z_1 Y_3 Y_4 Z_5 Z_5 Y_7 Z_8 Y_9, \alpha)$$

where

$$Z_j = \sum_{i=1}^j y_i, \quad Y_j = \sum_{i=j}^9 y_i.$$

This also illustrates how to handle any kind of censoring in an arbitrary space.
A closed form expression for $E(y_j)$ under the posterior distribution is not available. However, it is just $E(h(y_j|z_1,y_3,y_4,z_5,z_5,y_7,z_8,y_9))$.

where E_h denotes expectation under the finite dimensional Dirichlet distribution $D(\alpha(B_1),...,\alpha(B_9))$.

We can generate samples $(y_{r1},...,y_{r9})$, $r = 1,\ldots,N$ from $h(y_j)$ by using independent Gamma random variables and approximate the above as $\sum_{r=1}^{N} y_{rj}z_{r1}y_{r3}y_{r4}z_{r5}z_{r5}y_{r7}z_{r8}y_{r9} \sum_{r=1}^{N} z_{r1}y_{r3}y_{r4}z_{r5}z_{r5}y_{r7}z_{r8}y_{r9}$.

Susarla-Van Ryzin Example, Extended -3
Susarla-Van Ryzin Example, Extended -3

A closed form expression for $E(y_j)$ under the posterior distribution is not available. However, it is just

$$
\frac{E_h(y_j Z_1 Y_3 Y_4 Z_5 Z_5 Y_7 Z_8 Y_9)}{E_h(Z_1 Y_3 Y_4 Z_5 Z_5 Y_7 Z_8 Y_9)}.
$$
Susarla-Van Ryzin Example, Extended -3

A closed form expression for $E(y_j)$ under the posterior distribution is not available. However, it is just

$$
\frac{E_h(y_j Z_1 Y_3 Y_4 Z_5 Z_5 Y_7 Z_8 Y_9)}{E_h(Z_1 Y_3 Y_4 Z_5 Z_5 Y_7 Z_8 Y_9)}.
$$

where E_h denotes expectation under the finite dimensional Dirichlet distribution $\mathcal{D}(\alpha(B_1), \ldots, \alpha(B_9))$.
A closed form expression for $E(y_j)$ under the posterior distribution is not available. However, it is just

$$\frac{E_h(y_j Z_1 Y_3 Y_4 Z_5 Z_5 Y_7 Z_8 Y_9)}{E_h(Z_1 Y_3 Y_4 Z_5 Z_5 Y_7 Z_8 Y_9)}.$$

where E_h denotes expectation under the finite dimensional Dirichlet distribution $\mathcal{D}(\alpha(B_1), \ldots, \alpha(B_9))$.

We can generate samples $(y_1^r, \ldots, y_9^r), r = 1, \ldots, N$ from $h(y)$ by using independent Gamma random variables and approximate the above as

$$\frac{\sum_{r=1}^N y_j^r Z_1^r Y_3^r Y_4^r Z_5^r Z_5^r Y_7^r Z_8^r Y_9^r}{\sum_{r=1}^N Z_1^r Y_3^r Y_4^r Z_5^r Z_5^r Y_7^r Z_8^r Y_9^r}.$$
Susarla-Van Ryzin Example, Extended -4

This method is justified by the Law of Large Numbers and good rates of convergence are well known.
This method is justified by the Law of Large Numbers and good rates of convergence are well known.

It does not use imputation and MCMC methods, which add another level of randomness in the final answer.
Susarla-Van Ryzin Example, Extended -4

This method is justified by the Law of Large Numbers and good rates of convergence are well known.

It does not use imputation and MCMC methods, which add another level of randomness in the final answer.

This method will handle any kind of censoring and is applicable to distributions in multidimensional spaces.
This method is justified by the Law of Large Numbers and good rates of convergence are well known.

It does not use imputation and MCMC methods, which add another level of randomness in the final answer.

This method will handle any kind of censoring and is applicable to distributions in multidimensional spaces.

Of course, we can estimate many features other than just the distribution function, i.e, median, quantiles, etc.
Susarla-Van Ryzin Example, Extended -5

We use our method to recalculate the estimates of $F(t)$ based on Susarla-Van Ryzin data. When the transformation to independent Beta variables is used we get the same results as Susarla and Van Ryzin. However, this depends on the fact that all the censoring were right censoring results.

<table>
<thead>
<tr>
<th>t</th>
<th>Exact</th>
<th>LLN</th>
<th>SSS</th>
<th>KME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.80</td>
<td>0.1083</td>
<td>0.1082</td>
<td>0.1083</td>
<td>0.1250</td>
</tr>
<tr>
<td>1.00</td>
<td>0.1190</td>
<td>0.1189</td>
<td>0.1190</td>
<td>0.1450</td>
</tr>
<tr>
<td>2.70</td>
<td>0.2071</td>
<td>0.2068</td>
<td>0.2084</td>
<td>0.1250</td>
</tr>
<tr>
<td>3.10</td>
<td>0.3006</td>
<td>0.3000</td>
<td>0.3011</td>
<td>0.3000</td>
</tr>
<tr>
<td>5.40</td>
<td>0.4719</td>
<td>0.4708</td>
<td>0.4706</td>
<td>0.4750</td>
</tr>
<tr>
<td>7.00</td>
<td>0.5256</td>
<td>0.5244</td>
<td>0.5261</td>
<td>0.4750</td>
</tr>
<tr>
<td>9.20</td>
<td>0.6823</td>
<td>0.6810</td>
<td>0.6802</td>
<td>0.7375</td>
</tr>
<tr>
<td>12.10</td>
<td>0.7501</td>
<td>0.7487</td>
<td>0.7476</td>
<td>0.7375</td>
</tr>
</tbody>
</table>
We use our method to recalculate the estimates of $F(t)$ based on Susarla-Van Ryzin data. When the transformation to independent Beta variables is used we get the same results as Susarla and Van Ryzin. However, this depends on the fact that all the censoring were right censoring results.

We also use on LLN method to compute estimates of $F(t)$. A comparison of the results is given below:

<table>
<thead>
<tr>
<th>t</th>
<th>0.80</th>
<th>1.00+</th>
<th>2.70+</th>
<th>3.10</th>
<th>5.40</th>
<th>7.00+</th>
<th>9.20</th>
<th>12.10+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>0.1083</td>
<td>0.1190</td>
<td>0.2071</td>
<td>0.3006</td>
<td>0.4719</td>
<td>0.5256</td>
<td>0.6823</td>
<td>0.7501</td>
</tr>
</tbody>
</table>
Susarla-Van Ryzin Example, Extended -5

We use our method to recalculate the estimates of $F(t)$ based on Susarla-Van Ryzin data. When the transformation to independent Beta variables is used we get the same results as Susarla and Van Ryzin. However, this depends on the fact that all the censoring were right censoring results.

We also use on LLN method to compute estimates of $F(t)$. A comparison of the results is given below:

<table>
<thead>
<tr>
<th>t</th>
<th>0.80</th>
<th>1.00+</th>
<th>2.70+</th>
<th>3.10</th>
<th>5.40</th>
<th>7.00+</th>
<th>9.20</th>
<th>12.10+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>0.1083</td>
<td>0.1190</td>
<td>0.2071</td>
<td>0.3006</td>
<td>0.4719</td>
<td>0.5256</td>
<td>0.6823</td>
<td>0.7501</td>
</tr>
<tr>
<td>LLN</td>
<td>0.1082</td>
<td>0.1189</td>
<td>0.2068</td>
<td>0.3000</td>
<td>0.4708</td>
<td>0.5244</td>
<td>0.6810</td>
<td>0.7487</td>
</tr>
</tbody>
</table>
Susarla-Van Ryzin Example, Extended -5

We use our method to recalculate the estimates of $F(t)$ based on Susarla-Van Ryzin data. When the transformation to independent Beta variables is used we get the same results as Susarla and Van Ryzin. However, this depends on the fact that all the censoring were right censoring.

We also use on LLN method to compute estimates of $F(t)$. A comparison of the results is given below:

<table>
<thead>
<tr>
<th>t</th>
<th>0.80</th>
<th>1.00+</th>
<th>2.70+</th>
<th>3.10</th>
<th>5.40</th>
<th>7.00+</th>
<th>9.20</th>
<th>12.10+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>0.1083</td>
<td>0.1190</td>
<td>0.2071</td>
<td>0.3006</td>
<td>0.4719</td>
<td>0.5256</td>
<td>0.6823</td>
<td>0.7501</td>
</tr>
<tr>
<td>LLN</td>
<td>0.1082</td>
<td>0.1189</td>
<td>0.2068</td>
<td>0.3000</td>
<td>0.4708</td>
<td>0.5244</td>
<td>0.6810</td>
<td>0.7487</td>
</tr>
<tr>
<td>SSS</td>
<td>0.1083</td>
<td>0.1190</td>
<td>0.2084</td>
<td>0.3011</td>
<td>0.4706</td>
<td>0.5261</td>
<td>0.6802</td>
<td>0.7476</td>
</tr>
</tbody>
</table>
We use our method to recalculate the estimates of $F(t)$ based on Susarla-Van Ryzin data. When the transformation to independent Beta variables is used we get the same results as Susarla and Van Ryzin. However, this depends on the fact that all the censoring were right censoring results.

We also use on LLN method to compute estimates of $F(t)$. A comparison of the results is given below:

<table>
<thead>
<tr>
<th>t</th>
<th>0.80</th>
<th>1.00+</th>
<th>2.70+</th>
<th>3.10</th>
<th>5.40</th>
<th>7.00+</th>
<th>9.20</th>
<th>12.10+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>0.1083</td>
<td>0.1190</td>
<td>0.2071</td>
<td>0.3006</td>
<td>0.4719</td>
<td>0.5256</td>
<td>0.6823</td>
<td>0.7501</td>
</tr>
<tr>
<td>LLN</td>
<td>0.1082</td>
<td>0.1189</td>
<td>0.2068</td>
<td>0.3000</td>
<td>0.4708</td>
<td>0.5244</td>
<td>0.6810</td>
<td>0.7487</td>
</tr>
<tr>
<td>SSS</td>
<td>0.1083</td>
<td>0.1190</td>
<td>0.2084</td>
<td>0.3011</td>
<td>0.4706</td>
<td>0.5261</td>
<td>0.6802</td>
<td>0.7476</td>
</tr>
<tr>
<td>KME</td>
<td>0.1250</td>
<td>0.1450</td>
<td>0.1250</td>
<td>0.3000</td>
<td>0.4750</td>
<td>0.4750</td>
<td>0.7375</td>
<td>0.7375</td>
</tr>
</tbody>
</table>
We take the data from Susarla-Van Ryzin and change the uncensored observations to be left censored. We use the same prior distribution for P and obtain estimates of $F(t)$ using the LLN approximation.

\[\hat{F}(t) \]

<table>
<thead>
<tr>
<th>t</th>
<th>LLN</th>
<th>0.80-</th>
<th>1.00+</th>
<th>2.70+</th>
<th>3.10-</th>
<th>5.40-</th>
<th>7.00+</th>
<th>9.20-</th>
<th>12.10+</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1737</td>
<td>0.1937</td>
<td>0.3625</td>
<td>0.3968</td>
<td>0.5274</td>
<td>0.5990</td>
<td>0.6796</td>
<td>0.7721</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Graphical Comparisons

Estimates of the df from censored (all types) data, based on PB priors

Two-way censoring

Prior df

Right censoring

